![]()
Лента событий:
fortpost решил задачу "Арифметическая прогрессия в хвосте квадрата - 2" (Математика):
![]()
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
15
всего попыток:
90
Дано множество Т = {1935; 1936; 1939; 1951; 1953; 1957; 1963; 1971; 1981; 1983; 1984; 2013; 2016; 2023; 2025}. Назовем число N тетраэдровым, если и N правильными единичными треугольниками можно оклеить без наложений и пустот правильный тетраэдр. Сколько в множестве Т тетраэдровых чисел? ![]()
Задачу решили:
21
всего попыток:
22
У математика 19 гирь с массой в килограммах ln2, ln3, ln4,....ln20 и точные двухчашечные весы. Какое наибольшее количество гирь он сможет использовать для уравновешивания на весах. ![]()
Задачу решили:
13
всего попыток:
32
Рассмотрим треугольную сетку точек в виде равностороннего треугольника, на стороне которого находятся 8 точек: На следующем рисунке изображён пример фигуры, границей которой является замкнутая ломаная, обладающая следующими свойствами:
Фигура в этом примере состоит из 34-х маленьких треугольников. Найдите наибольшее количество маленьких треугольников, из которых может состоять фигура, граница которой является ломаная со всеми указанными свойствами, на треугольной сетке равностороннего треугольника с 15-ю точками на стороне. ![]()
Задачу решили:
13
всего попыток:
23
Рассмотрим треугольную сетку из 1+2+3+...+n точек, покрашенных в три цвета, расположенных в виде равностороннего треугольника с n точками на стороне. На рисунке изображён пример такой сетки при n=4. Сетка обладает таким свойством: ни одна тройка точек одного цвета не образует равносторонний треугольник. Найдите максимальный n, при котором это возможно. ![]()
Задачу решили:
11
всего попыток:
46
Рассмотрим открытый шар x2 + y2 + z2 < R2 и пересекающие его плоскости x=a, y=b, z=c, где a, b, c – все целые числа в пределах: |a|, |b|, |c| < R. На сколько частей эти плоскости делят шар, если R=6? ![]()
Задачу решили:
14
всего попыток:
51
Рассмотрим сферу x2 + y2 + z2 = R2 и пересекающие её плоскости x=a, y=b, z=c, где a, b, c – все целые числа в пределах: -R < a, b, c < R. На сколько частей эти плоскости делят сферу, если R=6 ? (Считаются только невырожденные части сферы). ![]()
Задачу решили:
14
всего попыток:
16
Пусть x є R, y є R, таковы, что x = y*(3 – y)2 и y = x*(3 – x)2. Найдите все возможные суммы (x + y), а также целые части от выражений (x + y + ½), то есть, величины [x + y + ½], где квадратные скобки обозначают функцию целой части. В ответе укажите сумму всех полученных чисел [x + y + ½], соответствующих всем решениям исходной системы. Например, если бы величина [x + y + ½] принимала только следующие значения, и только с указанной кратностью: 0; 6 (кратность 2); 7; 9; 13 (кратность 2) и 27, то ответ был бы равен 81 (причем, в данном примере двукратные величины 6 и 13 повторяются). ![]()
Задачу решили:
15
всего попыток:
20
Окружность проходит через вершины B и C параллелограмма ABCD и касается его высоты AH, проведенной к стороне CD, в точке K. KF – это перпендикуляр, проведенный из точки K к прямой BC. Длины отрезков CH, HD и KF – последовательные натуральные числа, расположенные в возрастающем порядке. Найдите длину стороны АВ параллелограмма ABCD. ![]()
Задачу решили:
4
всего попыток:
5
Рассмотрим квадратную сетку из 20×20 точек. Найдите количество различных (неконгруэнтных) замкнутых ломаных на этой сетке, обладающих следующими свойствами:
На рисунке изображён пример замкнутой ломаной, обладающей этими же свойствами, на квадратной сетке меньшего размера: ![]()
Задачу решили:
5
всего попыток:
12
Рассмотрим треугольную сетку из 1+2+3+...+n точек, расположенных в виде равностороннего треугольника с n точками на стороне. Определим f(n) как максимально возможное количество точек этой сетки, не образующих ни один равносторонний треугольник (любого наклона). Найдите f(2)+f(3)+f(4)+f(5)+f(6)+f(7)+f(8)+f(9).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|