Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
27
всего попыток:
38
В алфавите из n букв можно составлять слова в которых стоящие рядом буквы различны и из которых вычеркиванием букв нельзя получить слова вида abab, гда a и b различные. Найдите максимально возможную длину слова. В ответе укажите длину слова для n = 33.
Задачу решили:
26
всего попыток:
61
На какое максимальное число непересекающихся областей могут рассечь круг отрезки, соединяющие n точек, лежащих на его окружности? Ответ укахите для n = 12.
Задачу решили:
18
всего попыток:
36
Сколько существует квадратов, вершины которых находятся на узлах точечной сетки 100x2021? На рисунке изображён пример квадрата в точечной сетке 5x8.
Задачу решили:
26
всего попыток:
34
Требуется сшить ковёр размерои 3х3 метра. Для этого можно использовать лоскуты материи размерами 0.5х0.5 метра и 0.5х1 метр в любом количестве, при условии, что сшитый ковёр не имеет прямых швов от края до края ковра. Два ковра считаются разными, если в них использовано разное количество лоскутов (независимо от их расположения). Сколько разных ковров можно изготовить в этих условиях?
Задачу решили:
27
всего попыток:
44
Внутри цилиндра расположен куб ABCDA1B1C1D1 так, что все его вершины лежат на поверхности цилиндра, причем вершины B и D1 совпадают с центрами оснований, а остальные вершины лежат на боковой поверхности цилиндра. Найдите объем цилиндра, если квадрат ребра куба равен 27. Объём цилиндра будет иметь вид kπ. В ответе укажите числовой множитель k.
Задачу решили:
25
всего попыток:
48
Администратор сайта проводит конкурс на лучшую авторскую задачу. Условия таковы: участники анонимно предлагают одну свою задачу. После публикации задач все участники дают оценку каждой задаче, кроме своей. В конкурсе приняли участие 6 человек. Каждый участник за лучшую (по его мнению) задачу давал 5 баллов, за следующую 4 балла, и т.д., за пятую - 1 балл. По каждой задаче баллы суммировались - это рейтинг задачи. Оказалось, что все рейтинги различны. А) Могли ли все рейтинги быть простыми числами? Б) Могла ли сумма четырёх наибольших рейтингов быть в три раза больше суммы остальных рейтингов? В) Какова минимальная сумма третьего и четвёртого по величине рейтингов? В качестве ответа на вопросы А), Б) вводите 1, если «Да» и 0, если «Нет»; на вопрос В) вводите сумму рейтингов. Например, ответ 1029 означает: А) «Да», Б) «Нет», В) 29.
Задачу решили:
11
всего попыток:
16
Отрезки, соединяющие центры оснований правильной шестиугольной призмы и центры противоположных граней правильного октаэдра, совпадают. Боковое ребро призмы пересекает ребро октаэдра в его середине. Найти наибольшее отношение объёма общей части тел к объёму октаэдра.
Задачу решили:
9
всего попыток:
14
Отрезки, соединяющие центры оснований правильной треугольной призмы и центры противоположных граней правильного октаэдра, совпадают. Боковое ребро призмы пересекает ребро октаэдра в его середине. Найти наибольшее отношение объёма общей части тел к объёму октаэдра.
Задачу решили:
12
всего попыток:
17
Высота правильной треугольной пирамиды соединяет центры двух противоположных граней правильного октаэдра, а боковое ребро пирамиды проходит через центр третьей грани октаэдра. Найти наименьшее отношение объёмов пирамиды и октаэдра.
Задачу решили:
18
всего попыток:
24
Вундеркинд Вася нашёл очень старый калькулятор, на котором изображались числа, но лишь на 8-ми позициях. Проверяя калькулятор на разных умножениях чисел, он вспомнил простой метод: имеется равенство N*x=111111111 (9 единиц), где х - некая цифра (N легко запоминается). Однако такое произведение не может получиться на старом калькуляторе. Такое умножение N*8 позволяло бы легко проверить находку, но к несчастью, кнопки "2","6","8" не работали! Вдруг Васю осенило проверить находку на правильность деления: М/у=N (у - тоже цифра), а заодно - и умножения N*у=М. Итак, запросто обнаружилась возможность получить работоспособный калькулятор после мелкого ремонта! Кнопку "2" Васе удалось починить почти сразу и проверить умножение (N*2)*2*2=N*8. Пусть m - количество всех разных цифр в записи числа N*8. Чему равно М+m?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|