Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
199
всего попыток:
820
С вероятностью 1/2 письмо спрятано в столе, при этом оно может находиться в каждом из его четырёх ящиков с равной вероятностью. После того, как в поисках письма случайным образом открыли три ящика, выяснилось, что письма в них нет. Сколько процентов составляет вероятность того, что письмо лежит в четвёртом ящике?
Задачу решили:
77
всего попыток:
279
Даны четырёхугольник ABCD, в котором ΑΒ=25, BC=17, CD=26, DA=15; и ещё две точки: точка E на стороне AB и точка F на стороне CD такие, что AE=10, EB=15, CF=9 и FD = 17. Пусть K - точка пересечения отрезков AF и DE, L - точка пересечения отрезков EC и BF, M - точка пересечения отрезков AC и BD. Чему равен угол KML (в градусах, округляя до целого числа)?
Задачу решили:
116
всего попыток:
317
У Маши две монетки. Одна монетка — честная, у другой вместо решки — второй орёл. Она наудачу выбрала из этих двух монеток одну и бросила её три раза. Все три раза выпал орёл. Какова вероятность того, что эта монетка — честная? Ответ введите в виде несократимой дроби p/q, набранной без пробелов.
Задачу решили:
48
всего попыток:
68
Найдите количество действительных решений уравнения f(f(x))=x, где функция f(x)=x3 - 2x2 + 6x - 18.
Задачу решили:
82
всего попыток:
215
В казино десятая часть игроков - профессионалы. Вероятность вытащить туза из колоды для профессионала равна 9/10, для обычного игрока 1/13. Один из партнеров по игре, перемешав колоду, сразу вытаскивает туза. Чему равна вероятность, что перед нами профессионал.
Задачу решили:
21
всего попыток:
106
В межгалактическом соревновании Остапа Бендера участвовали 2012 шахматистов. Странной тройкой будем называть шахматистов X, Y и Z, если X побеждает Y, Y побеждает Z, а Z побеждает X. Какое наибольшее возможное количество странных троек может быть?
Задачу решили:
50
всего попыток:
157
Муравей начинает свой путь в вершине куба и перемещается по ребрам в соответствии со следующим правилом: в каждой вершине он выбирает одно из трех ребер выходящих из этой вершины. Каждое ребро он выбирает с одинаковой вероятностью, независимо от предыдущего выбора. Какова вероятность, что муравей побывает в каждой вершине лишь раз?
Задачу решили:
90
всего попыток:
103
Даны 6 карточек. На каждой из них написано натуральное число. Вы произвольно берете три карточки и вычисляете сумму чисел на них. Вы сделали все 20 возможных комбинаций и заметили, что десять полученных сумм равны 16, а десять других - 18. Какое число из написанных на карточках наименьшее?
Задачу решили:
37
всего попыток:
133
В прямоугольной декартовой системе координат заданы три точки: K(41;29), L(-15;22), M(15;-23). Известно, что они являются вершинами равносторонних треугольников BCK, CAL и ABM, построенных на сторонах некоторого треугольника АВС и лежащих вне его. Найдите координаты вершин треугольника АВС. В ответе укажите сумму координат вершины В, округлив её до ближайшего целого числа.
Задачу решили:
30
всего попыток:
406
Дан треугольник ABC. Дан ещё один треугольник BCD, точки A и D находятся на той же стороне от прямой BC, и углы: CAB=DBC, ACB=BDC. Дан ещё один треугольник CDE, точки B и E находятся на той же стороне от прямой CD, и углы: DBC=ECD, BDC=CED. Дан ещё один треугольник DEF, точки C и F находятся на той же стороне от прямой DE, и углы: ECD=FDE, CED=DFE. И так далее по алфавиту почти до конца: последний треугольник - WXY. Чему равна длина отрезка AY, если |AB|=1, |BC|=31/2, а угол ABC=5π/6?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|