Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
11
всего попыток:
14
Кривая дракона – это рекурсивная ломаная, которая, начиная с единичного отрезка, за каждую итерацию удваивает свою длину, путем добавления к себе предыдущей части, повернутой на 90°. Рассмотрим такой вариант построения этой ломаной, когда направления поворотов задаются строкой из нулей и единиц: ноль задаёт поворот по часовой стрелке, а единица – поворот против часовой стрелки. На рисунке изображена ломаная, заданная строкой 111010. Эта ломаная образует 15 одноклеточных квадратиков. Рассмотрим ломаные, заданные всевозможными строками из 6-и нулей и единиц. Найдите сумму всех различных количеств квадратиков, которые они образуют.
Задачу решили:
11
всего попыток:
12
Кривая дракона – это рекурсивная ломаная, которая, начиная с единичного отрезка, за каждую итерацию удваивает свою длину, путем добавления к себе предыдущей части, повернутой на 90°. Рассмотрим такой вариант построения этой ломаной, когда направления поворотов задаются строкой из нулей и единиц: ноль задаёт поворот по часовой стрелке, а единица – поворот против часовой стрелки. На рисунке изображена ломаная, заданная строкой 111010. Эта ломаная помещается в наименьший прямоугольник размером 9х7 и площадью 63. Рассмотрим ломаные, заданные всевозможными строками из 6-и нулей и единиц. Каждая из них помещается в некоторый наименьший прямоугольник. Найдите сумму всех различных площадей этих прямоугольников.
Задачу решили:
9
всего попыток:
16
Первые сто простых чисел написаны мелом на ста досках (по одному числу на каждой доске). Разрешена такая операция: если на каких-то двух досках написаны числа a и b, a≤b, то можно их заменить на числа 2a и b-a. Какое максимальное количество чисел на досках можно обнулить посредством таких операций?
Задачу решили:
19
всего попыток:
33
На экзамене два преподавателя принимают экзамен у студентов. Один принимает только теорию, а второй только практику. Время затрачиваемое каждым преподавателем на прием теории, либо практики одинаковое. Через равные промежутки в аудиторию заходят по два студента, сдают экзамен (один из них теорию, второй практику), потом уходят, заходят следующие так далее. Т.е. каждый студент должен зайти в аудиторию два раза. Перед экзаменом студенты случайным образом разыгрывают между собой номера в очереди к каждому преподавателям. Найдите вероятность того, что полученное таким образом расписание для 8 студентов не сможет быть выполнено.
Задачу решили:
21
всего попыток:
49
При последовательном подбрасывании монеты, после каждого броска сравнивают количество ранее выпавших орлов и решек и подсчитывают сколько раз эти количества совпадали. Например, если монета выпадала так: ОРОРРРР (О - орел, Р - решка), то количество таких совпадений равно 2, а если РРРРОРОР, то количество совпадений равно 0. Пусть n - это количество бросков монеты, а F(n) это среднее количество совпадений (или математическое ожидание количества совпадений). Тогда: F(1) = 0/2 = 0, Найдите минимальное n при котором F(n) будет больше или равно 3
Задачу решили:
6
всего попыток:
20
Найдите количество частей, на которые разбивается пятимерное вещественное пространство гиперплоскостями x1=0, x2=0, x3=0, x4=0, x5=0,
Задачу решили:
22
всего попыток:
37
Найдите наименьший периметр прямоугольного треугольника, все стороны которого – рациональные числа, а площадь равна 5.
Задачу решили:
19
всего попыток:
28
Пусть e1, e2, ..., e10000 – все комплексные корни 10000-й степени из единицы. Найдите сумму всех их произведений по четыре: e1*e2*e3*e4 + e1*e2*e3*e5 + ... + e9997*e9998*e9999*e10000 = ? (Всего слагаемых: число сочетаний из 10000 по 4)
Задачу решили:
20
всего попыток:
30
При каком значении параметра P система: x1 + 2x2 + 4x3 + 8x4 + 8x5 = 16 не имеет решения?
Задачу решили:
10
всего попыток:
18
У Васи есть три предмета: 1. Монета 2. Игральная кость на каждой стороне которой написаны различные гласные буквы английского алфавита: 'AEIOUY' 3. Икосаэдр, на каждой грани которого написаны различные согласные буквы английского алфавита: 'BCDFGHJKLMNPQRSTVWXZ' Вася кидает монету и: - если выпадает орел, то он бросает игральную кость и выписывает выпавшую букву на доску; - если выпадает решка, то он бросает икосаэдр и выписывает выпавшую букву на доску. Так он продолжает делать, пока полученная последовательность букв не будет заканчиваться словом 'ABBA'. Сколько раз (в среднем) Василию придется бросить монетку?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|