img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 50
всего попыток: 157
Задача опубликована: 08.08.12 08:00
Прислал: levvol img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: nellyk

Муравей начинает свой путь в вершине куба и перемещается по ребрам в соответствии со следующим правилом: в каждой вершине он выбирает  одно из трех ребер выходящих из этой вершины. Каждое ребро он выбирает с одинаковой вероятностью, независимо от предыдущего выбора. Какова вероятность, что муравей побывает в каждой вершине лишь раз?

 

Задачу решили: 90
всего попыток: 103
Задача опубликована: 14.09.12 08:00
Прислал: kolkingen img
Источник: Кенгуру-задачник
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: bbny

Даны 6 карточек. На каждой из них написано натуральное число. Вы произвольно берете три карточки и вычисляете сумму чисел на них. Вы сделали все 20 возможных комбинаций и заметили, что десять полученных сумм равны 16, а десять других - 18. Какое число из написанных на карточках наименьшее?

Задачу решили: 37
всего попыток: 133
Задача опубликована: 05.10.12 08:00
Прислал: leonid img
Источник: Пособие для учащихся Э.Г.Готмана
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В прямоугольной декартовой системе координат заданы три точки: K(41;29), L(-15;22), M(15;-23). Известно, что они являются вершинами равносторонних треугольников BCK, CAL и ABM, построенных на сторонах некоторого треугольника АВС и лежащих вне его. Найдите координаты вершин треугольника АВС. В ответе укажите сумму координат вершины В, округлив её до ближайшего целого числа.

Задачу решили: 30
всего попыток: 406
Задача опубликована: 24.10.12 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Angelina

Дан треугольник ABC.

Дан ещё один треугольник BCD, точки A и D находятся на той же стороне от прямой BC, и углы: CAB=DBC, ACB=BDC.

Дан ещё один треугольник CDE, точки B и E находятся на той же стороне от прямой CD, и углы: DBC=ECD, BDC=CED.

Дан ещё один треугольник DEF, точки C и F находятся на той же стороне от прямой DE, и углы: ECD=FDE, CED=DFE.

И так далее по алфавиту почти до конца: последний треугольник - WXY.

Чему равна длина отрезка AY, если |AB|=1, |BC|=31/2, а угол ABC=5π/6?

Задачу решили: 71
всего попыток: 199
Задача опубликована: 06.02.13 08:00
Прислал: levvol img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: crazor (Дмитрий Мисерев)

Какова вероятность того, что два случайных натуральных числа  являются взаимно простыми, т.е. их наибольший общий делитель равен 1. (Ответ представить в виде округленного до целого значения числа процентов).

Задачу решили: 37
всего попыток: 401
Задача опубликована: 06.03.13 08:00
Прислал: zmerch img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Rep (Сергей Репин)

Сколько решений имеет уравнение

{20{13{20{13x}}}}=x2013 ?

Задачу решили: 24
всего попыток: 69
Задача опубликована: 31.05.13 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Доска 16х16 разделена на квадраты со стороной длины 1. Сколько сушествует троек различных узлов доски, через которые проходит парабола?

Задачу решили: 40
всего попыток: 48
Задача опубликована: 10.06.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 1 img
баллы: 100

Пусть A — конечное множество точек плоскости, каждая из которых покрашена в черный или белый цвет. Множество A называется неразделимым, если для любой прямой l, не содержащей точек A, найдутся точки разного цвета по одну сторону от l. Пусть M — неразделимое множество, никакие три точки которого не лежат на одной прямой. Найдите разность между количеством неразделимых подмножеств М с четным числом точек и количеством неразделимых подмножеств М с нечетным числом точек.

Задачу решили: 45
всего попыток: 196
Задача опубликована: 13.09.13 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Темы: геометрияimg
Лучшее решение: levvol

Рассмотрим множество парабол, уравнения которых имеют вид y=ax²+b, где a и b принимают все целые значения от 1 до 10 включительно. Т.е. всего 100 парабол.

Сколько в этом множестве пар подобных парабол?

Задачу решили: 67
всего попыток: 164
Задача опубликована: 27.01.14 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Если x=0,99999999999999999999 (двадцать девяток после запятой), то чему равна целая часть значения выражения:

x/1 + x2/2 + x3/3 + . . . ?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.