Лента событий:
DOMASH предложил задачу "Дырявый квадрат-4" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
11
всего попыток:
34
Квадрат 8×8 без двух угловых клеток требуется разрезать на минимальное количество частей, из которых можно собирать квадраты с двумя отсутствующими клетками во всех возможных местах, при этом части разрешается поворачивать и переворачивать. В ответе укажите количество частей, а в решении - их расположение на приведённой фигуре.
Задачу решили:
21
всего попыток:
21
Сложите из 100 экземпляров фигурок в 10 раз большую фигуру Фигурки можно поворачивать и переворачивать.
Задачу решили:
30
всего попыток:
75
Бумажный лист в форме квадрата 8х8, содержит 64 квадратные клетки, которые раскрашены в три цвета так, как на рисунке. Обратная сторона листа – зеленая. Сделав несколько сгибов, сложите этот лист в форме квадрата 4х4 так, чтобы лицевая сторона его состояла из 16 белых клеток, а обратная – из 16 черных. В ответе укажите наименьшее число сгибов. Уточнения: Сгиб – это поворот на 180° одной части фигуры вокруг некоторого отрезка прямой этой фигуры. Резать или рвать бумажный квадрат – нельзя. Промежутки между клетками не учитываются.
Задачу решили:
16
всего попыток:
40
На листе бумаги нарисована одна из разверток куба, состоящая из шести равных квадратов. Сложите этот лист, сделав несколько сгибов, и сделайте только один прямолинейный разрез ножницами так, чтобы лист оказался разрезан на две части, одна из которых – развертка куба. В ответе укажите наименьшее число сгибов. Уточнения: сгиб – это поворот на 180° одной части фигуры вокруг некоторого отрезка прямой этой фигуры.
Задачу решили:
7
всего попыток:
53
Поверхность куба разрезать на минимальное число частей так, чтобы ими оклеить без наложений и просветов два равных куба. Чему равно это число?
Задачу решили:
26
всего попыток:
61
На какое максимальное число непересекающихся областей могут рассечь круг отрезки, соединяющие n точек, лежащих на его окружности? Ответ укахите для n = 12.
Задачу решили:
24
всего попыток:
49
Шахматную доску 8×8 разрезали на n прямоугольников так, что в каждом прямоугольнике одинаковое число белых и черных клеток, и при этом, если ai - число клеток в i-м прямоугольнике, то a1 < a2 < ... < an. Найдите наибольшее число n, при котором возможно такое разбиение. В ответе укажите количество возможных различных разбиений a1, a2, ..., an при полученном n.
Задачу решили:
10
всего попыток:
14
Рассмотрим следующие 6 свободных полиомино: Свободное, или двустороннее полиомино – сколько бы его ни сдвигать, поворачивать и переворачивать, считается, что оно одно и тот же. В дальнейшем говорится только о таких. Определение. Если полиомино B можно построить путём добавления какого-то количества квадратиков (0 или больше) к полиомино A, то будем говорить, что A является подполиомино B. Нужно построить таблицу из 6x6=36 символов – НУЛЕЙ и ЕДИНИЦ – таким образом: Введите в ответ все эти символы подряд, строку за строкой. Нумерация строк идёт сверху вниз, а символов в строке – слева направо. Номера полиомино показаны на их изображениях.
Задачу решили:
17
всего попыток:
62
На шахматной доске n на n расставлены n2 ферзей n различных цветов, по n ферзей каждого цвета. Каждый ферзь стоит на отдельной клетке, и ни один ферзь не стоит ни на той же горизонтали, ни на той же вертикали, ни на той же диагонали (большой или маленькой) что другой ферзь того же цвета. На рисунке показан пример такой расстановки ферзей для n=5: Найдите 4 наименьших натуральных числа n, для которых это возможно. Укажите в ответе их сумму.
Задачу решили:
16
всего попыток:
16
Как разрезать правильный пятиугольник на 4 треугольника так, чтобы из них можно было составить равнобедренную трапецию?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|