img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 80
всего попыток: 117
Задача опубликована: 17.10.12 08:00
Прислал: kolkingen img
Источник: Кенгуру-задачник
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

После войны один из полков солдат построили на площади в форме прямоугольника. И 1% от этих солдат были награждены за отвагу. Причем, солдаты, получившие награды, точно встречаются в 30% рядов и в 40% колонн. Какое наименьшее количество солдат может быть в этом полку?

Задачу решили: 33
всего попыток: 63
Задача опубликована: 19.12.12 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Для двух натуральных x и k, рассмотрим два числа: x и (x+k). Определим функцию f(k)=i, где i - количество таких чисел xi, что и xi, и xi+k являются точными квадратами некоторых натуральных чисел. Например f(1)=0; f(3)=1 {x=1}; f(21)=2 {x1=4, x2=100} и т.д. В интервале 1<k<212 найдите все такие k, что f(k)=15. В ответе необходимо указать сумму всех таких k.

 

Задачу решили: 67
всего попыток: 101
Задача опубликована: 21.12.12 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Найдите минимальное натуральное число k такое, что при любых натуральных n, значение многочлена P(n)=7·n37+37·n7+4·k·n - делится на 259 без остатка.

Задачу решили: 78
всего попыток: 98
Задача опубликована: 07.01.13 08:00
Прислал: admin img
Источник: Олимпиада имени Леонарда Эйлера
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Zoxan

Имеется три последовательных чётных числа. У первого из них нашли наибольший чётный собственный делитель, у второго — наибольший нечётный собственный делитель, у третьего — опять наибольший собственный чётный делитель. Известно, что сумма трёх полученных делителей быть равна 2013. Чему равно первое число последовательности ? (Делитель натурального числа называется собственным, если он отличен от 1 и этого числа)

Задачу решили: 66
всего попыток: 203
Задача опубликована: 09.01.13 08:00
Прислал: Vkorsukov img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Все нечётные числа кратные 99 и в записи которых могут присутствовать только цифры 0, 1 и 2, выписаны в порядке возрастания. Найдите шестое число полученного ряда.

 

Задачу решили: 77
всего попыток: 117
Задача опубликована: 16.01.13 08:00
Прислал: admin img
Источник: Олимпиада имени Леонарда Эйлера
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

Два лыжника ходят на лыжах по кольцевой трассе, половина которой представляет с собой подъем в гору, а половина — спуск с горы. На подъёме их скорости одинаковы и вчетверо меньше их скоростей на спуске. Минимальное отставание второго лыжника от первого равно 4 км, а максимальное — 13 км. Найдите длину трассы.

Задачу решили: 65
всего попыток: 106
Задача опубликована: 18.01.13 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Для данной функции f(x)=\frac{2013^{2x}}{2013^{2x}+2013}., найдите сумму 

S=\sum\limits_{k=1}^{2013} f(\frac{k}{2013}).

Задачу решили: 230
всего попыток: 248
Задача опубликована: 21.01.13 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: nellyk

В стаде есть лошади, двугорбые верблюды и одногорбые верблюды. Лошадей столько же, сколько двугорбых верблюдов. Всего горбов 200. Сколько животных в стаде?

Задачу решили: 123
всего попыток: 397
Задача опубликована: 15.02.13 08:00
Прислал: zmerch img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Vkorsukov

Найдите минимальное время в секундах, за которое можно поджарить 7 котлет, если на сковороде умещается 6 котлет, и с каждой стороны котлету нужно жарить ровно 5 минут.

Задачу решили: 71
всего попыток: 108
Задача опубликована: 10.04.13 08:00
Прислал: zukk img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Петя задумал натуральное число и для каждой пары его цифр выписал на доске их разность. После этого он стер некоторые разности, и на доске остались числа 2, 0, 0, 7. Какое наименьшее число мог задумать Петя?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.