Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
18
всего попыток:
37
Алик загадал число от 1 до 2000. Стас может задавать ему вопросы, на которые Алик отвечает "да" илм "нет", но один раз может соврать, но может и не врать. Какое наименьшее число вопросов заведомо достаточно Стасу для угадывания?
Задачу решили:
48
всего попыток:
61
Сколько пар целых чисел удовлетворяют уравению 2/a+4/b=1.
Задачу решили:
43
всего попыток:
52
Одна из вершин треугольника имеет координаты (7, 1), другая вершина лежит на оси X, третья – на линии графика функции y=x. Определите минимально возможное значение периметра этого треугольника.
Задачу решили:
29
всего попыток:
64
В примере на умножение
(В честь 75-летнего юбилея.)
Задачу решили:
34
всего попыток:
47
В десятичной записи квадраты натуральных чисел a, b, c, d содержат в разрядах сотен и десятков соответственно 0 и 2, 2 и 4, 4 и 6, 6 и 8. Чему равно минимальное значение a+b+c+d?
Задачу решили:
27
всего попыток:
30
Имеется 14 кубиков: два кубика с числом 1, два кубика с числом 2, два кубика с числом 3 и так далее, два кубика с числом 7. Расположите эти кубики в ряд так, чтобы между кубиками с числом 1 был ровно 1 кубик, между кубиками с числом 2 было ровно 2 кубика, и так далее, между кубиками с числом 7 было ровно 7 кубиков. Построенное решение определяет 14-значное число, записанное цифрами от 1 до 7. Поскольку кубики можно расставить несколькими способами, то в ответе укажите наименьшее 14-значное число, соответствующее полученному решению. Для примера, на рисунке показано решение для 8 кубиков с числами от 1 до 4 и число 23421314, соответствующее этому решению.
Задачу решили:
37
всего попыток:
44
Натуральное число в десятичной записи заканчивается на цифру 6. Когда эту цифру перенесли в начало, то исходное число увеличилось в 4 раза. Найти сумму двух наименьших таких чисел.
Задачу решили:
48
всего попыток:
50
Найдите значение выражения
Задачу решили:
23
всего попыток:
36
На рисунке слева показан пример умножения двух трехзначных чисел 504 и 463. Он записан с отображением промежуточных произведений. На рисунке справа этот же пример записан с использованием 12 костяшек домино. Найдите другой пример умножения двух многозначных чисел, записанный в таком же формате, причем каждый множитель должен содержать хотя бы по две ненулевых цифры, промежуточные нулевые произведения не записываются и не учитываются. В ответе укажите наименьшее возможное число костяшек. В задаче используется стандартный набор домино, в котором 28 костяшек домино.
Задачу решили:
11
всего попыток:
34
Квадрат 8×8 без двух угловых клеток требуется разрезать на минимальное количество частей, из которых можно собирать квадраты с двумя отсутствующими клетками во всех возможных местах, при этом части разрешается поворачивать и переворачивать. В ответе укажите количество частей, а в решении - их расположение на приведённой фигуре.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|