Лента событий:
solomon добавил решение задачи "Дырявый квадрат-4" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
27
всего попыток:
30
Последовательность {xi, i є N} действительных чисел задана формулой xn+1 = 2*xn + (3*xn2 + 3)1/2. Известно, что х2018 + х2022 = 3822. Найдите х2020.
Задачу решили:
30
всего попыток:
32
В числовом ребусе
Задачу решили:
31
всего попыток:
44
Два луча,с углом 45° между ними, выходят из прямого угла треугольника с катетами в отношении 1:2 и делят его гипотенузу на три отрезка. Отрезки гипотенузы, примыкающие к катетам тоже относятся соответственно 1:2. Найти отношение среднего отрезка к длине гипотенузы.
Задачу решили:
31
всего попыток:
36
В куб вписаны три равных октаэдра. Две вершины каждого октаэдра лежат в центрах противоположных граней куба, а другие четыре вершины – середины ребер куба, перпендикулярных этим граням. Многогранник, являющийся объединением этих трех октаэдров, изображен на рисунке. Какую часть куба составляет объем этого многогранника?
Задачу решили:
33
всего попыток:
52
Торговец продал двум покупателям шарики трех цветов. 1-ый покупатель купил желтых шаров в 3 раза больше красных и синих вместе взятых, а красных в 5 раз меньше, чем в сумме желтых и синих. 2-й покупатель купил желтых в 2 раза больше красных и синих вместе взятых, а красных в 2 раза меньше, чем в сумме желтых и синих. Какое наибольшое количество шаров продал торговец, если желтых шаров у него было 161?
Задачу решили:
8
всего попыток:
19
Из бумаги склеили правильный тетраэдр. Затем на его поверхности последовательно сделали n разрезов в форме отрезков прямых, в результате чего она распалась на m частей, которыми удалось оклеить без просветов и наложений 3 одинаковых правильных тетраэдра, не имеющих общих точек. Найдите минимально возможное значение 100m + n. Замечание: разрезания разрешено чередовать с развёртыванием исходного тетраэдра.
Задачу решили:
24
всего попыток:
64
На рисунке приведен фрагмент школьного трафарета с четырьмя правильными многоугольниками. Начертите их на бумаге и выясните, какие из этих многоугольников можно разрезать на четыре равнобедренных треугольника, среди которых нет равных? (Треугольники нельзя складывать из более мелких частей.) Если можно разрезать, то ставим 1, если нельзя, то ставим 0, и, таким образом, ответ записывается четырехзначным числом, состоящем из нулей и единиц, порядок которых определяет расположение многоугольников на трафарете слева на право.
Задачу решили:
24
всего попыток:
39
В треугольник Рело вписан правильный шестиугольник (см. рис.). Найдите площадь шестиугольника, если |АВ|=65.
Задачу решили:
18
всего попыток:
35
На плоскости в узлах правильной треугольной решетки расположены точки так, что их множество образует правильный шестиугольник. На стороне этого шестиугольника 10 точек (рис. для 4 точек). Сколько существует правильных шестиугольников, которые определяются эти точки как их вершины?
Задачу решили:
33
всего попыток:
34
Найдите натуральное число, равное целой части произведения двухсот и арксинуса разности двух его некоторых цифр.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|