Лента событий:
TALMON добавил решение задачи "Дырявый квадрат-4" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
20
всего попыток:
26
Две окружности разных радиусов касаются в точке А. От точки В на большой окружности проведена касательная к малой в точке С. Отрезок ВС при внешнем касании два раза больше, чем ВС при внутреннем касании. Найти отношение радиусов (r/R) малой и большой окружностей.
Задачу решили:
17
всего попыток:
24
Квадрат имеет сторону длины n, n∈N. Все стороны квадрата разделены точками на единичные отрезки. В этот квадрат вписаны n-1 квадратов, все вершины которых находятся в точках деления. При этом исходный квадрат оказался разделен на части. Для каких простых чисел n, начиная с 2 и не превосходящих 100, число полученных частей в квадрате является простым? В ответе укажите сумму всех таких n. На рисунке приведен квадрат со стороной 4, в который вписаны 3 меньших квадрата.
Задачу решили:
17
всего попыток:
25
Длина стороны АВ треугольника АВС в 7 раз больше целочисленного радиуса вписанной окружности. Найти наименьшую целочисленную площадь треугольника, если эта окружность касается окружности, построенной на АВ как на диаметре.
Задачу решили:
20
всего попыток:
27
Показывая текущее время в часах и минутах, цифры на табло электронных часов могут располагаться строго по возрастанию, например, 0:45 или строго по убыванию, например, 8:30. Посчитайте в течение суток число различных показаний в обоих случаях. В ответе запишите отношение меньшего числа к большему.
Задачу решили:
14
всего попыток:
19
Равносторонний треугольник имеет сторону длины n, n∈N. Все стороны треугольника разделены точками на единичные отрезки. В этот треугольник вписаны n-1 равносторонних треугольников, все вершины которых находятся в точках деления. На рисунке приведен (для иллюстрации) равносторонний треугольник со стороной 7, в который вписаны 6 меньших равносторонних треугольников. Обозначим: Tk – количество внутренних точек пересечения отрезков (сторон вписанных треугольников), через которые проходят ровно k отрезков. Найдите количество частей, на которые разделён исходный треугольник, если известно, что T2 = 2996676, T3 = 72 и T4 = 18.
Задачу решили:
23
всего попыток:
40
Вася спросил у Пети:"Сколько времени на твоих стрелочных часах?". Петя ответил:"Часы показывают времени столько, сколько получится при сложении четверти времени с полуночи до настоящего времени и половины времени с настоящего времени до следующей полуночи." Через какое минимальное время в минутах на такой же вопрос Васи Петя даст такой же ответ?
Задачу решили:
21
всего попыток:
36
Квадрат имеет сторону длины n, n∈N. Все стороны квадрата разделены точками на единичные отрезки. В этот квадрат вписаны n-1 квадратов, все вершины которых находятся в точках деления. При этом исходный квадрат оказался разделен на части. Найдите соотношение плошади полученной в центре части к площади исходного квадрата, когда n стремится к бесконечности. В ответе укажите целую часть этого соотношения, умноженного на 10000. На рисунке приведен квадрат со стороной 40, в который вписаны 39 меньших квадратов.
Задачу решили:
24
всего попыток:
30
Из середины D гипотенузы АВ прямоугольного треугольника АВС проведен луч, перпендикулярный к гипотенузе и пересекающий один из катетов. На нем отложен отрезок DE, длина которого равна половине гипотенузы. Длина отрезка СЕ=1 и совпадает с длиной одного из катетов. Найти целую часть численного значения 1000*S, где S-площадь треугольника АВС.
Задачу решили:
27
всего попыток:
32
Пусть p и q такие натуральные числа, что уравнения x2-px+q=0 и x2-qx+p=0 имеют неравные целочисленные корни. Найти количество таких различных упорядоченных пар (p, q).
Задачу решили:
24
всего попыток:
30
n-ый член последовательности 1, 6, 8, 20, 21, 40, 40, 66, 65, 98, 96, … — это число бесконечной таблицы Пифагора, которого достигает шахматный конь, сделавший n ходов, двигаясь по бесконечной ломаной линии, начиная с числа 1. Маршрут шахматного коня представляет собой бесконечную зигзагообразную ломаную линию, начало которой изображено на рисунке для таблицы 13х13. Все звенья ломаной имеют одинаковую длину и равны длине прыжка шахматного коня. Соседние звенья ломаной перпендикулярны, попеременно меняют направление влево, вправо, влево, вправо, ... Пусть a0=1, a1=6, a2=8. Найдите a111.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|