Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
9
всего попыток:
14
Отрезки, соединяющие центры оснований правильной треугольной призмы и центры противоположных граней правильного октаэдра, совпадают. Боковое ребро призмы пересекает ребро октаэдра в его середине. Найти наибольшее отношение объёма общей части тел к объёму октаэдра.
Задачу решили:
12
всего попыток:
17
Высота правильной треугольной пирамиды соединяет центры двух противоположных граней правильного октаэдра, а боковое ребро пирамиды проходит через центр третьей грани октаэдра. Найти наименьшее отношение объёмов пирамиды и октаэдра.
Задачу решили:
4
всего попыток:
7
Поверхность правильного октаэдра разрезать на несколько частей, чтобы ими можно было оклеить без просветов и наложений как два равных правильных тетраэдра, так и три равных правильных октаэдра. На какое минимальное число частей можно разрезать октаэдр?
Задачу решили:
35
всего попыток:
35
Три квадрата расположены как на рисунке. Их площади указаны. Найти площадь многоугольника ABCDEF.
Задачу решили:
2
всего попыток:
4
Поверхность правильного тетраэдра разрезать на части и сложить из них правильный октаэдр без просветов и наложений. На какое минимальное число частей можно разрезать тетраэдр?
Задачу решили:
34
всего попыток:
39
Квадрат и прямоугольник размещены так, что выделенные точки лежат на окружности (см. рис.). Площадь квадрата равна 7, площадь прямоугольника - 5. Найти площадь жёлтого квадрата.
Задачу решили:
24
всего попыток:
51
На рисунке изображен октаэдр, вписанный в куб. Две его вершины О1 и О2 лежат в центрах противоположных граней куба, а вершины A, B, C и D – середины ребер куба, перпендикулярных этим граням. У куба три пары противоположных граней, поэтому в него можно вписать таким образом три октаэдра. Какую часть куба составляет объем общей части этих трех октаэдров.
Задачу решили:
26
всего попыток:
27
Из одной вершины равностороннего треугольника провели прямую, которая пересекает противоположную сторону и делит треугольник на два треугольника. В каждый из них вписаны окружности, радиусы которых относятся как 2:3. Каково отношение длин отрезков(меньшей к большемй), на которые была разделена сторона равностороннего треугольника?
Задачу решили:
31
всего попыток:
36
В куб вписаны три равных октаэдра. Две вершины каждого октаэдра лежат в центрах противоположных граней куба, а другие четыре вершины – середины ребер куба, перпендикулярных этим граням. Многогранник, являющийся объединением этих трех октаэдров, изображен на рисунке. Какую часть куба составляет объем этого многогранника?
Задачу решили:
18
всего попыток:
35
На плоскости в узлах правильной треугольной решетки расположены точки так, что их множество образует правильный шестиугольник. На стороне этого шестиугольника 10 точек (рис. для 4 точек). Сколько существует правильных шестиугольников, которые определяются эти точки как их вершины?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|