img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Mangoost решил задачу "REBUSы" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 68
всего попыток: 107
Задача опубликована: 03.10.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Алекс и Борис бегут супермарафон длиной 70 км. Скорость Алекса 7 км/ч, а Бориса - 10 км/ч. Однако Борис в любой момент может изменить скорость на 5 км/ч и бежать медленнее до самого конца. С какой вероятностью Алекс победит?

Задачу решили: 23
всего попыток: 107
Задача опубликована: 21.11.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Три точки выбираются случайным образом из внутренней части единичного круга. Найдите вероятность того, что окружность, проходящая через эти три точки лежит целиком внутри единичной окружности.

Задачу решили: 59
всего попыток: 132
Задача опубликована: 12.08.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100

Вероятность появления автомобиля на шоссе за 30-минутный период составляет 0.95. Какова вероятность его появления за 10 минут? (Ответ укажите с точностью до второго знака после запятой.)

Задачу решили: 41
всего попыток: 108
Задача опубликована: 03.01.18 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Три игрока 1, 2 и 3 играют в морской бой. В одно время играют двое. Все игроки имеют одинаковую силу. Победитель играет с тем, кто не играл. Выигрывает в турнире тот, кто первым выиграл 2 игры подряд. Вычислите вероятность того, что победит 3-й игрок, при условии, что первая игра была между 1 и 2.

Задачу решили: 32
всего попыток: 45
Задача опубликована: 15.04.20 08:00
Прислал: admin img
Источник: Венгерская математическая олимпиада
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: levvol

Имеется 90 карточек с номерами от 1 до 90. Из них вытаскивают 5. Какова вероятность того, что на них будут хотя бы два последовательных номера?

Задачу решили: 26
всего попыток: 63
Задача опубликована: 19.04.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Бабушка к Пасхе покрасила яйца: 10 красных, 10 желтых и 10 розовых. Первой к ней в гости пришла внучка и случайным образом взяла три яйца. Затем к ней в гости пришел внук и тоже случайным образом взял три яйца. Какова вероятность того, что внук взял яйца трех различных цветов?

Задачу решили: 38
всего попыток: 60
Задача опубликована: 20.07.20 08:00
Прислал: avilow img
Источник: По мотивам ЕГЭ
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: vochfid

При исполнении пенальти футболист попадает в створ ворот с вероятностью 0,9. Вратарь во время пенальти угадывает направление с вероятностью 0,5. Вероятность того, что вратарь отразит мяч, если угадает направление, составляет 0,7, а вероятность того, что вратарь отразит мяч, если не угадает направление, составляет 0,1.  Какова вероятность, что футболист забьет гол вратарю? Ответ укажите в процентах.

Задачу решили: 17
всего попыток: 18
Задача опубликована: 24.07.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

На каждой грани кубика написано число. При одновременном бросании двух кубиков кубик A выигрывает у кубика B, если число, выпавшее на кубике A больше числа, выпавшего на кубике B. Будем говорить, что кубик A сильнее кубика B, если кубик A чаще выигрывает у кубика B и записывать A > B.

Можно ли на гранях пяти кубиков расставить числа от 1 до 30 (каждое по одному разу) так, чтобы оказалось: Зеленый кубик > Черный кубик > Оранжевый кубик > Желтый кубик > Белый кубик > Зеленый кубик ?

Нетранзитивные кубики

На приведенном примере числа на кубиках расставлены случайным образом.

Задачу решили: 19
всего попыток: 33
Задача опубликована: 16.08.23 08:00
Прислал: user033 img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Vkorsukov

На экзамене два преподавателя принимают экзамен у студентов. Один принимает только теорию, а второй только практику. Время затрачиваемое каждым преподавателем на прием теории, либо практики одинаковое. Через равные промежутки в аудиторию заходят по два студента, сдают экзамен (один из них теорию, второй практику), потом уходят, заходят следующие так далее. Т.е. каждый студент должен зайти в аудиторию два раза. Перед экзаменом студенты случайным образом разыгрывают между собой номера в очереди к каждому преподавателям. Найдите вероятность того, что полученное таким образом расписание для 8 студентов не сможет быть выполнено.

Задачу решили: 21
всего попыток: 49
Задача опубликована: 25.08.23 08:00
Прислал: user033 img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: old

При последовательном подбрасывании монеты, после каждого броска сравнивают количество ранее выпавших орлов и решек и подсчитывают сколько раз эти количества совпадали. Например, если монета выпадала так: ОРОРРРР (О - орел, Р - решка), то количество таких совпадений равно 2, а если РРРРОРОР, то количество совпадений равно 0. Пусть n - это количество бросков монеты, а F(n) это среднее количество совпадений (или математическое ожидание количества совпадений).

Тогда:

F(1) = 0/2 = 0,
F(2) = 2/4 = 0.5
F(3) = 4/8= 0.5
F(4) = 14/16= 0.875
Найдите минимальное n при котором F(n) будет больше или равно 3
 
 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.