Лента событий:
DOMASH предложил задачу "Дырявый квадрат-4" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
78
всего попыток:
173
Пусть N! обозначает число равное произведению всех чисел от 1 до N. Будем считать, что 0!=1. Удалим из ряда натуральных чисел все числа у которых сумма факториалов их цифр не равна 111. Последним оставшимся числом будет число состоящее из 111 единиц. А чему равна сумма двух первых оставшихся чисел?
Задачу решили:
21
всего попыток:
129
A - основание 4-угольной пирамиды. B, C, D, E - её боковые грани. B и D - две противоположные боковые грани (так же как и C и E). Их углы с основанием A: α - угол между гранью B и основанием A. β - угол между гранью D и основанием A. x - сумма углов α и β, выраженных в градусах. Какое максимальное целое значение может принимать x?
Задачу решили:
71
всего попыток:
137
Пусть AB - диаметр некоторой окружности. Из точек A и B, под углами и к AB, проведем хорды AE и BD, пересекающиеся в точке C. Найдите площадь треугольника CDE, если длина касательных FE и FD равны.
Задачу решили:
147
всего попыток:
213
Вы пошли в супермаркет за дисками. Один диск стоит 1 доллар, но при приобретении X дисков (X < 100) вы получаете скидку X %. Когда вы пришли домой, вам сказал брат: "Ты заплатил за диски наибольшую возможную сумму денег!". Сколько долларов вы заплатили?
Задачу решили:
10
всего попыток:
40
В шахматах существуют такие расстановки фигур, что любой игрок, при своём ходе, может поставить мат в 1 ход. Нас интересуют расстановки, обладающие этим свойством, с наименьшим количеством фигур на доске. В ответе укажите количество таких различных расстановок.
Задачу решили:
38
всего попыток:
139
Дан равносторонний шестиугольник с длиной стороны 5 и с перпендикулярными друг другу диагоналями 11 и 8. На какое минимальное число подобных треугольников его можно разрезать?
Задачу решили:
129
всего попыток:
227
В комнате сидели 2 матери и 2 дочери, у которых сегодня день рождения. Им всем вместе исполнилось 100 лет. А 3 года назад всем мамам и всем дочкам было ровно 93 года. Сколько лет самой старшей из них, если одна из мам на 33 года старше своей дочери, а другая мама старше своей дочери менее, чем на 32 года?
Задачу решили:
42
всего попыток:
113
Через маленький населённый пункт Грюнхаузен проходит по прямой линии оживлённая трасса федерального значения. Жители городка добились наконец постройки объездной дороги. График показывает участок карты, на которой прямая через точки А и C — бывшая трасса, а линия, проходящая через красные точки — новая объездная дорога. Все расстояния даны в километрах. Новая дорога проходит через точки A, B, C и в точке А плавно переходит в старую трассу. Эта дорога описывается полиномом третьего порядка с рациональными коэффициентами. Закрашенная область – собственно городок. Его северная граница соответствует параболе c рациональными коэффициентами. Граница городка проходит через точки D,E и F. Участок земли, находящийся между новой дорогой, северной границей городка и прямолинейными участками старой трассы (до пунктов А и C), будет использован под промзону. Сколько денег получит городская казна при продаже участка по цене 10.95 евро за квадратный метр? Ответ представьте в миллионах евро, округлив до ближайшего целого числа.
Задачу решили:
38
всего попыток:
377
На рисунке ноль имеет 2 квадратика касающихся квадратиков следующей цифры – единицы. Единица имеет 3 квадратика касающихся квадратиков соседних цифр. Цифра 2 имеет 4 квадратика касающихся квадратиков соседних цифр и т.д. Девятка имеет 4 квадратика касающихся квадратиков цифры 8. Если значение каждой цифры умножить на число квадратиков касающихся квадратиков других цифр и сложить эти произведения, получим: 0·2+1·3+2·4+3·6+4·7+5·8+6·5+7·6+8·9+9·4=277. Переставить цифры не переворачивая их так, чтобы получить максимальную сумму. Ответом является полученная сумма. Число может начинаться с нуля, накладывать цифры друг на друга и выдвигать по вертикали нельзя.
Задачу решили:
93
всего попыток:
374
В компании ровно у одного — один друг, ровно у одного — два друга и т.д. до пяти. Какое наименьшее число людей может быть в такой компании?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|