img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к решению задачи "Утроение октаэдра" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 9
всего попыток: 23
Задача опубликована: 01.03.24 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

На гранях кубика написаны все буквы слова "ХОРОШО" - по одной букве на грань. Буква О написана 3 раза, но мы не различаем эти буквы - у нас просто есть 4 различных символа Х, О, Р, Ш. Сколько раз в среднем надо бросить кубик, чтобы в последних 4-х бросках впервые выпали 4 разных символа?

Задачу решили: 25
всего попыток: 25
Задача опубликована: 03.04.24 08:00
Прислал: admin img
Источник: Будущие исследователи - будущее науки
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

В пятизначном числе зачеркнули одну цифру и сложили получившееся число с исходным. В результате получилось 54321. Найдите исходное число.  

Задачу решили: 10
всего попыток: 12
Задача опубликована: 08.04.24 08:00
Прислал: MikeNik img
Источник: Диалоги при игре в лото
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В большом мешке находятся 600 пронумерованных от 0 до 599 бочонков лото.

На билете лото напечатаны пять разных полей с числами. На первом поле - числа от 0 до 59, на втором - от 60 до 149, на третьем - от 150 до 269, на четвёртом - от 270 до 419 и на пятом - от 420 до 599.

В процессе игры из мешка, случайным образом, вынимают бочонки. Число, которое обозначено на вынутом бочонке вычеркивается в билете лото, а бочонок возвращается в мешок.

Билет лото считается выигрышным, и игра заканчивается, как только в каждом из пяти полей билета оказалось, по меньшей мере, вычеркнуто одно число.

Сколько раз в среднем надо вынуть бочонок из мешка, чтобы билет лото стал выигрышным?

 

Задачу решили: 11
всего попыток: 18
Задача опубликована: 22.05.24 08:00
Прислал: user033 img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В мешке есть шары 3 различных цветов. Поочередно берут один шар, смотрят на его цвет и кладут обратно в мешок.

Оказалось, для того чтобы вынуть хотя-бы раз шар каждого цвета, требуется в среднем 937/105 попыток.

Какое минимальное количество шаров может быть в мешке?

Задачу решили: 7
всего попыток: 18
Задача опубликована: 21.06.24 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2657
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

За какое минимальное количество поворотов на 180 градусов можно "перекрасить" собаку, построенную (сконструированную) из змейки Рубика (см. рисунки)?

Перекрасить собаку

+ 1
  
Задачу решили: 22
всего попыток: 25
Задача опубликована: 26.06.24 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: логикаimg
Лучшее решение: user033 (Олег Сopoкин)

По кругу стоят 7 диванов, на них сидит всего 50 человек, на каждом диване - хотя бы один человек. Каждый сказал:"На следующем по часовой стрелке диване ровно половина людей выше меня, а ровно половина - ниже." Какое наибольшее число людей могло сказать правду?

Задачу решили: 9
всего попыток: 15
Задача опубликована: 08.07.24 08:00
Прислал: TALMON img
Источник: По мотивам задачии 2668
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Kf_GoldFish

За какое минимальное количество ходов можно из фигуры А змейки Рубика:

Хитрая змейка Рубика

получить фигуру Б?

Хитрая змейка Рубика

Покажите пример решения. Ходом считается один поворот двух частей змейки Рубика на 180 градусов вокруг одного шарнира.

Задачу решили: 20
всего попыток: 28
Задача опубликована: 06.09.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Девочка пронумеровала черные клетки шахматной доски 8х8 числами от 1 до 32 в натуральном порядке так, как показано на рисунке.

Шахматная доска и квадраты 2х2

Мальчик собирается пронумеровать числами от 1 до 32 белые клетки этой доски так, чтобы суммы четырех чисел в любом квадрате 2х2 оказались равными. Сколькими различными способами мальчик сможет это сделать? В ответе укажите сумму всех чисел, расположенных на «белой» диагонали всех возможных решений (эти клетки отмечены звездочками).

Задачу решили: 12
всего попыток: 26
Задача опубликована: 14.10.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: makar243 (Сулейман Макаренко)

25 точек расположены в узлах решетки в форме квадрата (рис. слева).

Ломаные маршруты

Сколько симметричных маршрутов можно проложить из точки A в точку B по линиям решетки так, чтобы каждый маршрут проходил через все точки и не пересекал себя? На рисунке справа показаны два различных симметричных маршрута.

Задачу решили: 12
всего попыток: 38
Задача опубликована: 25.10.24 08:00
Прислал: DOMASH img
Источник: По мотивам задачи Н. Авилова
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Девочка пронумеровала черные клетки шахматной доски 8х8 числами от 1 до 32 змейкой так, как показано на рисунке.

Шахматная доска и квадраты 2х2 - 2

Мальчик собирается пронумеровать числами от 1 до 32 белые клетки этой доски так, чтобы суммы четырех чисел в любом квадрате 2х2 оказались равными. Сколькими различными способами мальчик сможет это сделать? В ответе укажите сумму всех возможных чисел, отмеченных звёздочкой.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.