Лента событий:
vochfid решил задачу "Дырявый квадрат-3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
30
всего попыток:
45
Николай начертил две равновеликие фигуры: правильный пятиугольник с прямыми углами при вершинах и правильный треугольник. Чему равны углы при вершинах треугольника в градусах?
Задачу решили:
42
всего попыток:
58
Вершину С правильного треугольника АВС соединили отрезком с точкой M, делящей сторону AB в отношении 3:5. В образовавшиеся при этом два треугольника вписали круги, площадь меньшего из них равна 52. Найдите площадь большего круга.
Задачу решили:
24
всего попыток:
75
Сколько существует различных (попарно не конгруэнтных) треугольников, площадь которых и площади квадратов, построенных на их сторонах, - целые числа, не превосходящие 10?
Задачу решили:
21
всего попыток:
70
Если бумажную полосу единичной ширины завязать простым узлом так, чтобы он стал плоским, то узел примет форму правильного пятиугольника (рис. слева). Пятиугольник на рисунке справа получен из бумажной полосы завязыванием пяти таких узлов. Чему равна длина полосы, если в сложенном виде её противоположные концы совпадают с отрезком АВ. Ответ округлите до целого числа.
Задачу решили:
33
всего попыток:
50
Найдите площадь фигуры, ограниченной кривой: 13x2 + 10xy + 13y2 = 72. Ответ округлите до двух знаков после запятой.
Задачу решили:
38
всего попыток:
51
Четыре вершины правильного шестиугольника лежат на параболе у=х2, сторона шестиугольника, соединяющая оставшиеся две его вершины, пересекает ось Оу в точке А (смотри рисунок). Найдите ординату точки А.
Задачу решили:
35
всего попыток:
35
Три квадрата расположены как на рисунке. Их площади указаны. Найти площадь многоугольника ABCDEF.
Задачу решили:
34
всего попыток:
39
Квадрат и прямоугольник размещены так, что выделенные точки лежат на окружности (см. рис.). Площадь квадрата равна 7, площадь прямоугольника - 5. Найти площадь жёлтого квадрата.
Задачу решили:
26
всего попыток:
27
Из одной вершины равностороннего треугольника провели прямую, которая пересекает противоположную сторону и делит треугольник на два треугольника. В каждый из них вписаны окружности, радиусы которых относятся как 2:3. Каково отношение длин отрезков(меньшей к большемй), на которые была разделена сторона равностороннего треугольника?
Задачу решили:
18
всего попыток:
35
На плоскости в узлах правильной треугольной решетки расположены точки так, что их множество образует правильный шестиугольник. На стороне этого шестиугольника 10 точек (рис. для 4 точек). Сколько существует правильных шестиугольников, которые определяются эти точки как их вершины?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|