img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 28
всего попыток: 30
Задача опубликована: 08.06.22 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Для положительных x, y и z таких, что x2+y2+z2+2xyz=1, найдите максимум xy+yz+zx-2xyz.

Задачу решили: 26
всего попыток: 41
Задача опубликована: 13.07.22 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: MMM (MMM MMM)

Пусть a, b и c действительные неотрицательные числа такие, что a+b+c=2. Найдите максимум выражения (a2-ab+b2)*(b2-bc+c2)*(c2-ca+a2).

Задачу решили: 22
всего попыток: 29
Задача опубликована: 20.07.22 08:00
Прислал: TALMON img
Источник: Идея обобщить задачу для любого количества сл...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: vochfid

Найдите максимальную сумму a+b+c+d+e+f+g среди всех семёрок целых чисел {a, b, c, d, e, f, g}, для которых выполняется:

0 < a < b < c < d < e < f < g

и

1/a + 1/b + 1/c + 1/d + 1/e + 1/f + 1/g = 1/7.

Задачу решили: 35
всего попыток: 43
Задача опубликована: 03.08.22 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

xy+x+y=20,
zy+z+y=6,
xz+x+z=2. 

Найдите максимум значения выражения x2+y2+z2.

Задачу решили: 34
всего попыток: 48
Задача опубликована: 14.09.22 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

a+b=1, a2+b2=2. Найдите a11+b11.

Задачу решили: 30
всего попыток: 48
Задача опубликована: 19.09.22 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Найдите количество действительных решений системы уравнения:
x+2y+4z=9,
4yz+2xz+xy=13,
xyz=3.

Задачу решили: 31
всего попыток: 50
Задача опубликована: 23.09.22 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Найдите количество действительных решений:
sin(π*x)=|ln|x||

Задачу решили: 22
всего попыток: 26
Задача опубликована: 28.09.22 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: mda

Пусть f(x) - многочлен такой, что f(f(x))−x2 = xf(x). Найти f(2022).

Задачу решили: 23
всего попыток: 27
Задача опубликована: 30.09.22 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Различные числа а, b, c таковы, что уравнения x2+ax+1=0 и x2+bx+c=0 имеют общий действительный корень. Кроме того, уравнения x2+x+a=0 и x2+cx+b=0 тоже имеют общий действительный корень. Найти сумму a+b+c. 

Задачу решили: 27
всего попыток: 32
Задача опубликована: 21.10.22 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: putout (Дмитрий Лебедев)

Пусть p и q такие натуральные числа, что уравнения x2-px+q=0 и x2-qx+p=0 имеют неравные целочисленные корни. Найти количество таких различных упорядоченных пар (p, q). 

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.