img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
+ 1
  
Задачу решили: 12
всего попыток: 21
Задача опубликована: 07.06.23 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Треугольный планшет - это доска в форме правильного треугольника со штырями, которые вбиты в узлы треугольной решетки. Имеется неограниченное количество резиновых колец, каждое из которых можно натягивать на штыри так, что резинка принимает контур равностороннего треугольника. Требуется надеть на штыри несколько резинок так, чтобы они охватывали все шторы и контуры всех возможных равносторонних треугольников, у которых стороны параллельны сторонам треугольного планшета. Размер планшета определяется числом штырей на одной стороне его треугольного поля. Если размер планшета обозначить буквой n, количество надетых резинок N, то возможна такая последовательность: для n=2, 3, 4, 5, ..., для N=1, 5, 13, 27, ... соответственно. Найти n, для которого N/(n-1)=1000. 

+ 2
  
Задачу решили: 18
всего попыток: 22
Задача опубликована: 26.06.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: makar243 (Сулейман Макаренко)

Куб 9х9х9, изображенный на рисунке справа, составлен из единичных кубиков. Эти кубики раскрашены в два цвета так, что некоторые из них образуются трехмерные кресты с общим центром (см. рис.).

Куб 29х29х29

Торцы крестов – это квадраты 1х1, 3х3, 5х5, …, которые составлены из квадратных рамок, чередующихся по цвету. Сколько синих кубиков в кубе 29х29х29, раскрашенного по такому же принципу?

Задачу решили: 21
всего попыток: 29
Задача опубликована: 14.08.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

На плоскости нарисован правильный треугольник со стороной n, где n∈N. Проведены прямые, содержащие его стороны и всевозможные прямые, параллельные его сторонам и делящие стороны треугольника на единичные отрезки. На сколько частей такие прямые делят плоскость, если за основу взят треугольник со стороной 100?

Треугольник и прямые

Для примера приведена конструкция при n = 3, в которой прямые делят плоскость на 30 частей.

Задачу решили: 18
всего попыток: 20
Задача опубликована: 18.09.23 08:00
Прислал: TALMON img
Источник: По мотивам задач 1680 и 2533
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Стороны правильного треугольника со стороной n, где n∈N, разделены точками на единичные отрезки. На сколько частей делят плоскость всевозможные прямые, параллельные его сторонам и проходящие через точки разделения, если n=100?

Треугольник и прямые – 2

На рисунке изображены эти прямые для треугольника со стороной n=4. Они делят плоскость на 34 части.

Задачу решили: 19
всего попыток: 20
Задача опубликована: 04.10.23 08:00
Прислал: TALMON img
Источник: По мотивам задач 2533 и 1680
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Стороны правильного треугольника со стороной n, где nN, разделеныточками на единичные отрезки. На сколько частей делят плоскость стороны треугольника и всевозможные прямые, параллельные его сторонам и проходящие через точки разделения, если n=100?



На рисунке изображены эти прямые для треугольника со стороной n=4. Они (и стороны треугольника) делят плоскость на 43 части.

Задачу решили: 20
всего попыток: 23
Задача опубликована: 10.11.23 08:00
Прислал: admin img
Источник: Польская математическая олимпиада
Вес: 2
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Lec

Определить сумму всех целых положительных чисел n < 1000 таких, что  из n прямоугольников с размерами 1×n, 2×n, 3×n, ..., n×n можно cложить квадрат. (Прямоугольники нельзя накладывать друг на друга.)

Задачу решили: 8
всего попыток: 10
Задача опубликована: 01.12.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MikeNik (Mikhail Nikitkov)

Рассмотрим всевозможные замкнутые цепочки правильных n-угольников одинакового размера, центры которых лежат на одной окружности (образуя некоторый правильный многоугольник), и каждые два последовательных многоугольника имеют одну общую сторону. Например, при n=8 существуют ДВЕ такие цепочки.

Однако, коллега aaa_uz выдвинул интересную идею о расширении определения таких замкнутых цепочек, используя дополнительные "витки обхода": в случае не замыкания цепочки одним витком обхода, продолжать добавлять новые n-угольники (залезая на старые), пока цепочка не замкнётся: последний n-угольник будет иметь общую сторону с первым.

В случае нескольких витков обхода центры n-угольников образуют самопересекающуюся замкнутую ломаную ("звезду"), совершая определённое количество витков обхода вокруг центра цепочки. При n=8 существует ровно ОДНА такая цепочка. Она использует ТРИ витка обхода. Всего существует ТРИ цепочки 8-угольников в расширенном определении:

Витки обхода

Обозначим f(n) суммарное количество витков обхода всех цепочек n-угольников. Таким образом, f(8) = 1+1+3 = 5. Найдите f(10403).

Задачу решили: 8
всего попыток: 26
Задача опубликована: 19.01.24 08:00
Прислал: avilow img
Источник: Клуб "Диоген"
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

На рисунке изображены две равные фигуры: слева желтая фигура, сложенная из 18 желтых U-пентамино, справа – зеленая фигура, сложенная из 30 зеленых I-тримино, употребив таким образом 18+30=48 фигурок.

Две равные фигуры

Сложите две равные фигуры, одну желтую, другую зеленую, употребив суммарно наименьшее количество желтых U-пентамино и зеленых I-тримино.

Задачу решили: 11
всего попыток: 53
Задача опубликована: 31.01.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Lec

На рисунке слева изображены три несимметричных пентамино, справа приведена фигура, сложенная из этих пентамино и имеющая ось симметрии.

Симметриксы из трех пентамино

Сколько различных фигур, имеющих ось симметрии, можно сложить из этих трех пентамино?

Задачу решили: 10
всего попыток: 15
Задача опубликована: 11.03.24 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Площадь выпуклого восьмиугольника с углами 135 градусов и вершинами в узлах сетки  равна 12,5 единичных квадратов (см. рисунок).

Восьмиугольники с равными углами

Сколько аналогичных восьмиугольников площадью 16 единичных квадратов можно разместить на сетке?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.