Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
33
всего попыток:
41
Найдите наибольшее четырехзначное простое число из разных цифр кроме нуля, у которого сумма всевозможных двузначных чисел с использованием его цифр равна 484.
Задачу решили:
15
всего попыток:
74
Квадрат 3×3 можно заполнить числами от 1 до 9 магическим образом, т. е. так, что суммы чисел по столбцам, строкам и диагоналям равны - это число называется магической суммой. Можно также подобрать девять различных натуральных чисел, обратными к которым можно заполнить квадрат магическим образом так, что магическая сумма будет равна 1/N. Найдите минимально возможное натуральное N. В качестве решения укажите все подобранные числа.
Задачу решили:
49
всего попыток:
79
У директора школы в кабинете телефон соединён напрямую с телефонами шести завучей. Каждые два телефона соединены напрямую проводом. Сколько отрезков проводов потребовалось для проведения этих телефонных линий?
Задачу решили:
27
всего попыток:
38
Чему равна наибольшая разность двух десятизначных чисел кратных 17 с различными цифрами в десятичной системе?
Задачу решили:
27
всего попыток:
61
На доске написаны числа 2, 3, 4, ..., 2019, 2020. За рубль можно отметить любое число. Если какое-то число уже отмечено, можно бесплатно отмечать его делители и числа, кратные ему. За какое наименьшее число рублей можно отметить все числа на доске?
Задачу решили:
32
всего попыток:
50
Четыре действительных числа x1, x2, x3, x4 таковы, что каждое число, сложенное с произведением остальных, равно 2. Сколько различных таких четвёрок существует?
Задачу решили:
44
всего попыток:
48
Существует загадочное 10-значное десятичное число abcdefghij такое, что все его цифры разные, и они обладают следующими свойствами:
Какое это число?
Задачу решили:
39
всего попыток:
42
Найдите количество пар натуральных чисел (x, y) удовлетворяющих уравнения 2x=3y+5. В ответе укажите сумму значений возможных x.
Задачу решили:
38
всего попыток:
42
Найдите сумму 20208+20218+...+20998. В качестве ответа введите число состоящее из последних двух цифр суммы.
Задачу решили:
27
всего попыток:
47
Натуральные числа А, В, С, меньшие 100, таковы, что А дважды увеличивается на В%, а затем дважды уменьшается на А% и получается С. Какое наибольшее значение может принять каждое из чисел А, В, С? В ответе укажите их сумму.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|