img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: TALMON добавил комментарий к решению задачи "Три точки на прямой" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 132
всего попыток: 145
Задача опубликована: 09.03.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: levvol

Известно, что (TWO)2=THREE, одинаковым буквам соответствуют одинаковые цифры, разным - разные. Чему равно TWO?

Задачу решили: 30
всего попыток: 92
Задача опубликована: 11.03.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zhekas (Евгений Сыромолотов)

Пусть a, b и c - корни кубического уравнения x3+3x2+5x+7=0. Для кубического многочлена p(x) известно, что p(a)=b+c, p(b)=c+a, p(a+b+c)=-16. Найти p(0).

Задачу решили: 49
всего попыток: 80
Задача опубликована: 13.03.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Найти максимум m=xy2z2/(x5+y5+z5) для всех положительных чисел x, y, z. В ответе введите значение (5m)5.

Задачу решили: 53
всего попыток: 65
Задача опубликована: 18.03.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Пусть x, y, z ≥ 0 и x+y+z=1. Найдите максимум x(x+y)2(y+z)3(z+x)4.

Задачу решили: 98
всего попыток: 115
Задача опубликована: 23.03.15 08:00
Прислал: levvol img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg

При каком минимальном натуральном n выполняется неравенство\sqrt {n} - \sqrt {n - 1} < 0.01 

Задачу решили: 64
всего попыток: 120
Задача опубликована: 25.03.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: levvol

Пусть p(n) является произведением всех делителей для целого положительного n (включая 1 и n).

Будем число n называть "особым", если p(n)=n2. Найдите сумму первых пяти особых чисел.

Задачу решили: 55
всего попыток: 99
Задача опубликована: 27.03.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: levvol

Рассмотрим возрастающую последовательность целых положительных чисел, квадрат которых заканчивается на 889.

Найти 889-е такое число.

Задачу решили: 49
всего попыток: 99
Задача опубликована: 30.03.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Найти сумму всех возможных значений k таких, что

2k+3m+1=6n, все k, m и n - целые.

Задачу решили: 35
всего попыток: 54
Задача опубликована: 10.04.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: snape

Пусть k, m, n - натуральные числа меньшие чем 1215. Найти количество упорядоченных троек таких, что k2+7m2+5, m2+7n2+5, n2+7k2+5 - являются целыми квадратами.

Задачу решили: 52
всего попыток: 127
Задача опубликована: 15.04.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: kvanted

Пусть множество S такое, что:

1) 2 принадлежит S

2) если n принадлежит S, то и n+5 принадлежит S

3) если n принадлежит S, то и 3n принадлежит S.

Найдите максимальное n из S меньшее 2009.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.