Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
43
всего попыток:
55
Пусть многочлен P(x)=x3+x2+c, c - действительное число. Пусть I - конечный интервал такой, что P(x) имеет более, чем один действительный корень для всех c принадлежащих I. Найдите длину этого интервала.
Задачу решили:
45
всего попыток:
82
Найдите сумму всех целых значений x и y, удовлетворяющих уравнению x3+(x+1)3+...+(x+7)3=y3.
Задачу решили:
35
всего попыток:
64
Длины сторон треугольника ABC равны: |AB| = 43 |AC| = 45 |BC| = 4 Точка O - центр окружности описанной около треугоьника ABC. Точка Q - центр окружности описанной около треугоьника, вершины которого - середины сторон треугольника ABC. D и E - точки на прямой BC. Отрезки OD и QE перпендикулярны прямой BC. Найдите длину отрезка DE.
Задачу решили:
46
всего попыток:
59
Пусть a, b, c и d - действительные числа и . Найти d.
Задачу решили:
46
всего попыток:
63
Сторона треугольника равна 53. Растояние от центра окружности, описанной около этого треугольника, до этой стороны равно 37. Чему равна сумма всех возможных значений угла, противоположного этой стороне, в градусах?
Задачу решили:
37
всего попыток:
71
В треугольнике ABC биссектрисы углов B и C пересекают стороны AC и AB соответственно в точках D и E. Разность углов <ADE - <AED равна 60 градусов. Найти угол ACB в градусах.
Задачу решили:
47
всего попыток:
55
abc+ab+bc+ca+a+b+c=71 bcd+bc+cd+db+b+c+d=191 cda+cd+da+ac+c+d+a=95 dab+da+ab+bd+d+a+b=143 Найти abcd+a+b+c+d.
Задачу решили:
53
всего попыток:
56
Пусть a, b, c, d > 0 и c2+d2=(a2+b2)3, найти минимум значения a3/c+b3/d.
Задачу решили:
37
всего попыток:
58
Пусть P(x)=x2016±x2015±...±x±1 многочлен с коэффициентами ±1. Известно, что у него нет действительных корней. Какое максимальное количество коэффициентов -1 у него может быть?
Задачу решили:
103
всего попыток:
121
На рисунке указаны проценты площадей непересекающихся областей квадратов. Чему равно соотношение сторон квадратов (меньшей к большей)?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|