img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: TALMON добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 38
всего попыток: 53
Задача опубликована: 01.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: leonid (Леонид Шляпочник)

Найти все такие f(x), что (x-1)f((x+1)/(x-1))-f(x)=x для x≠1.

В ответе укажите сумму значений этих функций в точке x=2016

Задачу решили: 44
всего попыток: 49
Задача опубликована: 06.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Числовая последовательность a0, a1, a2, ... такова, что при всех неотрицательных m и n (m >= n) выполняется соотношение

am+n + am−n = 1/2(a2m + a2n).

Найдите a2016, если a1 = 1.

Задачу решили: 43
всего попыток: 53
Задача опубликована: 08.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: azat

Рассматриваются всевозможные квадратичные функции f(x) = ax2 + bx + c, такие, что a < b и f(x) >= 0 для всех x. Какое наименьшее значение может принимать выражение (a + b + c)/(b − a)?

 
Задачу решили: 54
всего попыток: 87
Задача опубликована: 11.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: georgp

В классе 16 учеников. Каждый месяц учитель делит класс на две группы. Какое наименьшее количество месяцев должно пройти, чтобы любые два ученика в какой-то из месяцев оказались в разных группах?

Задачу решили: 53
всего попыток: 76
Задача опубликована: 15.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Пусть P(n) - это произведение всех ненулевых цифр натурального числа n. Найдите P(1)+P(2)+...+P(1000).

Задачу решили: 39
всего попыток: 68
Задача опубликована: 18.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

На сторонах квадрата выбираются случайным образом 3 точки. Найдите вероятность того, что центр квадрата находится внутри треугольника, построенного по выбранным точкам.

Задачу решили: 45
всего попыток: 63
Задача опубликована: 20.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Oleg2013

Назовем билет с номером от 000000 до 999999 отличным, если разность некоторых двух соседних цифр его номера равна 5. Найдите число отличных билетов.

Задачу решили: 65
всего попыток: 75
Задача опубликована: 22.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: snape

Все 5 представленных на рисунке прямоугольников, включая объединяющий, подобны.

Прямоугольники

Найти отношения площадей А и В.

+ 4
  
Задачу решили: 42
всего попыток: 54
Задача опубликована: 25.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Точечный прожектор, находящийся в вершине B равностороннего треугольника ABC, освещает угол α. Найдите сумму всех таких значений α, не превосходящих 60°, что при любом положении прожектора, когда освещенный угол целиком находится внутри угла ABC, из освещенного и двух неосвещенных отрезков стороны AC можно составить треугольник.

Задачу решили: 37
всего попыток: 72
Задача опубликована: 29.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: mikev

Пусть a, b и c — попарно взаимно простые натуральные числа. Найдите сумму всех возможных значений (a + b)(b + c)(c + a)/abc , если известно, что это число целое.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.