Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
74
всего попыток:
113
В натуральном числе A переставили цифры и получили число B. Известно, что A - B состоит из единиц. Найдите наименьшее возможное количество единиц в разности.
Задачу решили:
77
всего попыток:
149
Найти минимальное значение квадрата выражения: x/y+z/t, если 1≤x≤y≤z≤t≤2013.
Задачу решили:
128
всего попыток:
140
Произведение всех простых чисел, больших 3 и меньших n, имеет сумму цифр 8. Чему равно это произведение?
Задачу решили:
105
всего попыток:
117
Известно, что число ababab делится на 217. Найдите сумму возможных значений ab. (Здесь a, b - десятичные цифры, ababab и ab - числа, составленные из этих цифр.)
Задачу решили:
55
всего попыток:
115
Найти все пары натуральных чисел х и у такие, что х2 + 3у и у2 + 3х являются квадратами натуральных чисел. В ответе укажите сумму возможных значений y.
Задачу решили:
101
всего попыток:
128
Найдите минимум x8+x4+x2+y8+y4+y2 при условии x+y=1.
Задачу решили:
62
всего попыток:
105
Найти все способы построения 2013 спортсменов в N>1 рядов так, чтобы в каждом ряду, начиная со второго, стояло на одного человека больше, чем в предыдущем. Ввести сумму всех возможных значений N.
Задачу решили:
52
всего попыток:
78
Найти все способы построения 2013 спортсменов в N>1 рядов так, чтобы в каждом ряду, начиная со второго, стояло больше людей чем в предыдущем. Ввести сумму всех возможных значений N (одно и то же значение N считать только один раз).
Задачу решили:
71
всего попыток:
115
Найти максимальное значенияе n < 2013 при котором все коэффициенты в разложении бинома Ньютона (a + b)n нечетны?
Задачу решили:
117
всего попыток:
160
Чему равен остаток от деления 3104 на 103?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|