Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
44
всего попыток:
80
Сумма нескольких простых чисел равна их произведению. Найти максимально возможное количество таких чисел.
Задачу решили:
39
всего попыток:
56
Число 2100010006 обладает таким свойством: первая цифра равна количеству единиц в числе, вторая - двоек, и так далее, последняя - нулей. Найдите максимальное девятизначное число с "обратным" свойством, т.е. такое, в котором первая цифра соотвествует количеству "не единиц", вторая - "не двоек" и т.д., последняя - "не девяток".
Задачу решили:
50
всего попыток:
77
Найти сумму всех натуральных чисел N, что каждое такое число делится на все натуральные числа не превосходящие N1/2.
Задачу решили:
29
всего попыток:
36
Определим расстояние между числами a1a2a3a4a5 и b1b2b3b4b5 максимальное i, для которого ai ≠ bi. Найти минимально возможную сумму расстояний между всеми соседними пятизначными числами, расположенными, расположенными в некотором порядке.
Задачу решили:
44
всего попыток:
57
Найти количество корней уравнения sin(sin(sin(sin(x))))=cos(cos(cos(cos(x)))).
Задачу решили:
35
всего попыток:
64
Комплект из 4-х действительных чисел назовем хорошим, если любое число комплекта может быть представлено произведением двух других чисел комплекта. Найдите количество хороших комплектов. (Комплекты с перестановкой чисел считаются за один).
Задачу решили:
37
всего попыток:
39
Найти максимальное n такое, что при некотором натуральном k>1 существуют взаимно простые числа a и b для которых верно равенство: ak+bk=3n.
Задачу решили:
74
всего попыток:
80
Найти x+y, если известно, что (x+(x2+1)1/2)(y+(y2+1)1/2)=1
Задачу решили:
44
всего попыток:
48
В остроугольном треугольнике ABC точки A2, B2 и C2 - являются серединами высот AA1, BB1 и CC1. Найдите сумму углов B2A1C2, C2B1A2 и A2C1B2 в градусах.
Задачу решили:
38
всего попыток:
42
Имеется три стопки монет. За один ход можно из одной стопки переложить одну монету в другую. За ход Вовочка зарабатывает количество монет, равное разнице числа монет в стопке, из которой берется монета и числа монет в которую перекладывается. Если разница отрицательная, то у Вовочки забирается соответствующая сумма, если не хватает, то можно делать ходы в долг. В какой-то момент после перекладывания, все монетки оказались в первоначальных стопках. Какое максимальное количество монет мог заработать Вовочка?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|