Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
33
всего попыток:
52
Найдите количество взаимно-однозначных отображений, для которых выполняется ровно одно из условий .
Задачу решили:
50
всего попыток:
157
Муравей начинает свой путь в вершине куба и перемещается по ребрам в соответствии со следующим правилом: в каждой вершине он выбирает одно из трех ребер выходящих из этой вершины. Каждое ребро он выбирает с одинаковой вероятностью, независимо от предыдущего выбора. Какова вероятность, что муравей побывает в каждой вершине лишь раз?
Задачу решили:
61
всего попыток:
164
Таблица из натуральных чисел расположена в виде прямоугольника 3 на n (3 строки, n столбцов). Каждый столбец имеет сумму 4. Каждая строка имеет одну и ту же сумму, которая может не существовать для любого n. Найти количество различных таблиц в виде выражения от n. В ответе указать количество различных таблиц размером 3 на 9.
Задачу решили:
45
всего попыток:
76
Рассмотрим одноклеточное существо змейку – фигуру, первоначально содержащую один квадрат и растущую в плоскости за счет прибавления квадратных клеток того же размера к какой-нибудь его стороне. Стороны этой фигуры не должны выходить за пределы квадрата 1999 на 1999. Найти максимальное число клеток, которое может иметь связная фигура (в комбинаторике такая фигура называется полимино). Связность заключается в том, что в ней нет дыр. Кроме того, никакая точка фигуры не может одновременно принадлежать четырем клеткам, а каждая клетка не может иметь только одну точку общую с остальными клетками. Для иллюстрации приведен рисунок, показывающий процесс роста фигуры и запрещенные позиции, которые не может содержать фигура в процессе своего роста. ПРОЦЕСС РОСТА ФИГУРЫ ЗАПРЕЩЕННЫЕ ПОЗИЦИИ
a) b) c)
Задачу решили:
40
всего попыток:
261
Плоский граф содержит 122 вершины, все его грани шестиугольники. Граф содержит замкнутый путь, идущий по ребрам, проходящий через каждую вершину только один раз. Такой граф называется гамильтоновым. Найти число граней, которые имеет данный граф.
Задачу решили:
90
всего попыток:
103
Даны 6 карточек. На каждой из них написано натуральное число. Вы произвольно берете три карточки и вычисляете сумму чисел на них. Вы сделали все 20 возможных комбинаций и заметили, что десять полученных сумм равны 16, а десять других - 18. Какое число из написанных на карточках наименьшее?
Задачу решили:
70
всего попыток:
119
В прямоугольном треугольнике ABC с прямым углом при вершине А, биссектриса прямого угла пересекает гипотенузу BC в точке D, так что DAB = 45°. Если CD = 1 и BD = AD + 1, найти длину AD.
Ответ представить в виде целого числа, умножив результат на 1000 и округлив до ближайшего целого.
Задачу решили:
134
всего попыток:
155
Через одну и ту же точку провели 2012 различных окружностей. На какое наименьшее число частей они могут разбить плоскость?
Задачу решили:
46
всего попыток:
60
В остроугольном треугольнике ABC угол которого , внутри отрезков AB и AC можно выбрать две точки D и E так, что BD=CE=BC. Найдите длину отрезка DE, если квадрат расстояния между центрами вписанной и описанной окружностей треугольника ABC .
Задачу решили:
37
всего попыток:
133
В прямоугольной декартовой системе координат заданы три точки: K(41;29), L(-15;22), M(15;-23). Известно, что они являются вершинами равносторонних треугольников BCK, CAL и ABM, построенных на сторонах некоторого треугольника АВС и лежащих вне его. Найдите координаты вершин треугольника АВС. В ответе укажите сумму координат вершины В, округлив её до ближайшего целого числа.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|