img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 176
всего попыток: 226
Задача опубликована: 26.08.11 08:00
Прислала: Nana img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Число делится на 2011. При его делении на 3 получается остаток 1, а при делении на 5 — остаток 3. Каков остаток от деления этого числа на 15?

Задачу решили: 152
всего попыток: 195
Задача опубликована: 06.10.11 08:00
Прислала: Ulkas img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: Vkorsukov

Сомыч сделал шкаф в форме квадрата 3×3 с девятью отделениями. Внутреннее отделение он оставил свободным для пустых бутылок, а в остальных расположил 60 бутылок масла —по 9 в средних и по 6 в угловых. Таким образом, на каждой стороне квадрата получилось по 21 бутылке. Слуга Зая подметил, что хозяин проверяет число бутылок, считая бутылки только по сторонам квадрата и следя за тем, чтобы на каждой стороне квадрата было ровно по 21 бутылке. Тогда Зая унёс 4 бутылки, а остальные расставил так, что вновь получилось по 21 бутылке на каждой стороне. Сомыч пересчитал бутылки своим обычным способом и подумал, что бутылок по-прежнему 60, а слуга только переставил их. Зая воспользовался оплошностью Сомыча и снова унес 4 бутылки, расставив остальные так, что на каждой стороне квадрата выходило опять по 21 бутылке. Так он повторял, пока было возможно. Спрашивается, сколько всего бутылок унёс Зая? (Каждый раз он обворовывал Сомыча ровно на 4 бутылки.)

Задачу решили: 294
всего попыток: 432
Задача опубликована: 02.11.11 08:00
Прислал: NikitaKozlov777 img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: pakko

У одного человека было 35 тысяч рублей. Перед смертью он сказал своей беременной жене: "Если родится мальчик, то он должен получить денег в 2 раза больше тебя, а если девочка то в 2 раза меньше тебя". У неё родилась двойня мальчик и девочка. Сколько рублей получит мальчик?

Задачу решили: 170
всего попыток: 194
Задача опубликована: 07.11.11 08:00
Прислала: Ulkas img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: bbny

Пусть запись a$b обозначает наименьшее из чисел a + b и 2b. Решите уравнение x$3=5$x.

Задачу решили: 141
всего попыток: 158
Задача опубликована: 11.11.11 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: xxxSERGEYxxx

Все 10 цифр десятичной системы счисления выписывают слева направо в таком порядке, что на каждом этапе (то есть после выписывания каждой из цифр) число, образованное уже выписанными цифрами оказывается составным. Какое максимальное число можно получить таким образом?

Задачу решили: 129
всего попыток: 169
Задача опубликована: 09.12.11 08:00
Прислала: Margosha img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Каждый день в течение ста дней подряд Марго записывала показания уличного термометра. Затем ей пришло в голову вычислить все попарные произведения ста полученных значений. Среди вычисленных Марго произведений ровно 2013 оказались ниже нуля.

Сколько дней была нулевая температура? 

Задачу решили: 115
всего попыток: 300
Задача опубликована: 21.12.11 08:00
Прислал: Dremov_Victor img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: leonidr321 (Леонид Розенблат)

Цифры от 0 до 9 (каждую по одному разу и число не может начинаться с нуля) выписывают слева направо в таком порядке, чтобы в любой момент число, образованное выписанными цифрами, было составным. Какое наименьшее число можно получить таким образом?

Задачу решили: 163
всего попыток: 177
Задача опубликована: 26.12.11 08:00
Прислала: Margosha img
Источник: Подробности - в комментарии
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Решить ребус:

АПОРТ*4=ТРОПА

(одинаковыми буквами обозначены одинаковые цифры, разными - разные, число не может начинаться с нуля, система счисления - десятичная)

В ответе запишите значение слова ТРОПА. 

Задачу решили: 71
всего попыток: 119
Задача опубликована: 30.12.11 08:00
Прислала: Margosha img
Источник: Турнир журнала "Квант"
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Volga (Xxx Xxx)

По кругу выписали несколько попарно различных натуральных чисел, каждое из которых не больше 2011.

Оказалось, что для любых двух чисел, которые стоят через одно, их сумма кратна трём.

Какое максимальное количество чисел могло быть выписано? 

Задачу решили: 77
всего попыток: 152
Задача опубликована: 04.01.12 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: zmerch

Найдите сколько наборов натуральных чисел a1, a2, ..., a9 обладает следующиеми свойствами:
1 ≤ a1 ≤ a2 ≤ ... ≤ a9 ≤ 9 
a5 = 5
a9 - a1 ≤ 7.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.