Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
176
всего попыток:
226
Число делится на 2011. При его делении на 3 получается остаток 1, а при делении на 5 — остаток 3. Каков остаток от деления этого числа на 15?
Задачу решили:
152
всего попыток:
195
Сомыч сделал шкаф в форме квадрата 3×3 с девятью отделениями. Внутреннее отделение он оставил свободным для пустых бутылок, а в остальных расположил 60 бутылок масла —по 9 в средних и по 6 в угловых. Таким образом, на каждой стороне квадрата получилось по 21 бутылке. Слуга Зая подметил, что хозяин проверяет число бутылок, считая бутылки только по сторонам квадрата и следя за тем, чтобы на каждой стороне квадрата было ровно по 21 бутылке. Тогда Зая унёс 4 бутылки, а остальные расставил так, что вновь получилось по 21 бутылке на каждой стороне. Сомыч пересчитал бутылки своим обычным способом и подумал, что бутылок по-прежнему 60, а слуга только переставил их. Зая воспользовался оплошностью Сомыча и снова унес 4 бутылки, расставив остальные так, что на каждой стороне квадрата выходило опять по 21 бутылке. Так он повторял, пока было возможно. Спрашивается, сколько всего бутылок унёс Зая? (Каждый раз он обворовывал Сомыча ровно на 4 бутылки.)
Задачу решили:
294
всего попыток:
432
У одного человека было 35 тысяч рублей. Перед смертью он сказал своей беременной жене: "Если родится мальчик, то он должен получить денег в 2 раза больше тебя, а если девочка то в 2 раза меньше тебя". У неё родилась двойня мальчик и девочка. Сколько рублей получит мальчик?
Задачу решили:
170
всего попыток:
194
Пусть запись a$b обозначает наименьшее из чисел a + b и 2b. Решите уравнение x$3=5$x.
Задачу решили:
141
всего попыток:
158
Все 10 цифр десятичной системы счисления выписывают слева направо в таком порядке, что на каждом этапе (то есть после выписывания каждой из цифр) число, образованное уже выписанными цифрами оказывается составным. Какое максимальное число можно получить таким образом?
Задачу решили:
129
всего попыток:
169
Каждый день в течение ста дней подряд Марго записывала показания уличного термометра. Затем ей пришло в голову вычислить все попарные произведения ста полученных значений. Среди вычисленных Марго произведений ровно 2013 оказались ниже нуля. Сколько дней была нулевая температура?
Задачу решили:
115
всего попыток:
300
Цифры от 0 до 9 (каждую по одному разу и число не может начинаться с нуля) выписывают слева направо в таком порядке, чтобы в любой момент число, образованное выписанными цифрами, было составным. Какое наименьшее число можно получить таким образом?
Задачу решили:
163
всего попыток:
177
Решить ребус: АПОРТ*4=ТРОПА (одинаковыми буквами обозначены одинаковые цифры, разными - разные, число не может начинаться с нуля, система счисления - десятичная) В ответе запишите значение слова ТРОПА.
Задачу решили:
71
всего попыток:
119
По кругу выписали несколько попарно различных натуральных чисел, каждое из которых не больше 2011. Оказалось, что для любых двух чисел, которые стоят через одно, их сумма кратна трём. Какое максимальное количество чисел могло быть выписано?
Задачу решили:
77
всего попыток:
152
Найдите сколько наборов натуральных чисел a1, a2, ..., a9 обладает следующиеми свойствами:
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|