img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: solomon добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 65
всего попыток: 72
Задача опубликована: 07.05.18 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Площадь квадрата равна 100, найти площадь синей части.

kvadrat2.png

Задачу решили: 36
всего попыток: 68
Задача опубликована: 09.05.18 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Внутри угла в 60 градусов расположена точка. Расстояния от этой точки до сторон (лучей) и вершины угла равны различным целочисленным значениям. Найти наименьшее значение суммы этих расстояний. 

Задачу решили: 24
всего попыток: 42
Задача опубликована: 14.05.18 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Найти количество пар натуральных чисел (m, n) m < n ≤ 100 для которых есть по крайней мере одно натуральное число k (m < k < n) которое делится на любой общий делитель m и n.  

Задачу решили: 71
всего попыток: 96
Задача опубликована: 25.05.18 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Marutand

В числе 2018! сложили все цифры и получили новое число, затем в нем также сложили все цифры и так далее, пока не осталось число состоящее из одной цифры. Что это за число?

+ 3
  
Задачу решили: 65
всего попыток: 69
Задача опубликована: 28.05.18 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

На картинке вместо крестиков могут быть любые цифры кроме 7.

no7.jpg

Чему равно произведение?

Задачу решили: 59
всего попыток: 90
Задача опубликована: 30.05.18 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: xyz (Анна Андреева)

Сколько всего правильных многоугольников, у которых внутренние углы  в градусах являются целыми числами?

Задачу решили: 46
всего попыток: 55
Задача опубликована: 01.06.18 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: snape

Сколько 8-значных палиндромов не являются простыми числами?

Задачу решили: 41
всего попыток: 60
Задача опубликована: 04.06.18 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Пусть для любого натурального n: f(n)=nf(n-1), f(1)=1. Найти две последние цифры числа f(2018).

Задачу решили: 26
всего попыток: 67
Задача опубликована: 06.06.18 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Назовем непустое подмножество A ⊂ Ζ целых чисел набором типа N, если:
а) для любого n ∈ A, -n ∈ A;
б) для любого n ∈ A, -n+N ∈ A;
в) для любых n, m ∈ A, n+2m ∈ A.

Сколько существует различных наборов типа 18?

Задачу решили: 40
всего попыток: 43
Задача опубликована: 08.06.18 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg

(1+1/x)x+1=(1+1/1999)1999. Найти x.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.