Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
51
всего попыток:
105
В треугольник ABC со сторонами AB=62, BC=962, AC=960, будем вписывать n окружностей одинакового радиуса (n от 1 до бесконечности, натуральное) так, что все они касаются стороны AC, соседних окружностей, а крайние окружности касаются сторон AB и BC соответственно. (см.рис.). Существует конечная последовательность k натуральных чисел ai {a1,a2,a3,...,ak} таких, что если вписывать ai окружностей в данный треугольник, у полученных окружностей радиусы будут натуральными числами. Найдите эту последовательность. В ответе укажите сумму всех ее членов .
Задачу решили:
36
всего попыток:
156
На ипподроме происходит заезд восьми лошадей. Как много вариантов финишировать имеется, учитывая, что некоторые лошади могут придти к финишу одновременно (голова в голову)? (Две лошади могут финишировать тремя способами: А выигрывает, В выигрывает, А и B приходят одновременно).
Задачу решили:
49
всего попыток:
111
Через каждую вершину единичного куба проходит плоскость, все восемь плоскостей параллельны друг другу, а расстояния между соседними плоскостями равны. Найдите квадрат этого расстояния.
Задачу решили:
11
всего попыток:
78
Возьмём полоску бумаги и начнём её разрезать и сгибать пополам. Обозначим
Последовательность сгибов/разрезов назовём "фальцовкой". Определите на каком месте находится число 2012 в раскладке для следующей фальцовки: '2010201120122013'
Задачу решили:
27
всего попыток:
100
Найдите количество инъективных функций , обладающих следующим свойством: для всех .
Задачу решили:
40
всего попыток:
79
Найдите количество подмножеств множества натуральных чисел {1,2,...,37} с суммой элементов, делящейся на 74.
Задачу решили:
36
всего попыток:
94
Рассмотрим множество квадратов для первых 40 натуральных чисел: S={12,22,32,42,..., 392,402}. Для каждого из чисел 1<n<41, рассмотрим все подмножества S, которые состоят ровно из n элементов. Если при фиксированном n, в каждом из подмножеств длины n найдутся хотя бы два элемента x и y такие, что x+y =p простое число, будем называть число n - квадратнопростым. Найдите минимальное квадратнопростое число n для данного множества S. (Например для множества S={1, 4, 9}, n=2: {1, 4}, {1, 9}, {4, 9}; n=3: {1, 4, 9}, и минимальное квадратнопростое число n=3).
Задачу решили:
32
всего попыток:
250
При каком наименьшем k в любой раскраске клеток таблицы 2012?k в 1006 цветов найдутся четыре клетки одного цвета, стоящие на пересечении двух строк и двух столбцов?
Задачу решили:
89
всего попыток:
100
Для натурального n>3 будем обозначать через n? ( n-вопросиал) произведение всех простых чисел, меньших n. Найдите сумму решений уравнения n?=2n+16.
Задачу решили:
71
всего попыток:
114
Несколько (больше одного) человек, каждый из которых вначале имеет 300 долларов, играют в казино. Один раунд игры заключается в следующем. Все игроки отдают по 10 долларов крупье, затем один из них по жребию объявляется проигравшим. Он раздаёт все свои деньги поровну всем остальным и выходит из игры. В итоге оказалось, что у последнего оставшегося игрока капитал вновь составляет 300 долларов. Сколько человек пришло в казино?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|