Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
104
всего попыток:
188
В ряд слева направо были выставлены гирьки массами 1 г, 2 г, …, 13 г. Из них осталось только семь подряд стоящих, а остальные шесть гирек потеряны. За какое наименьшее число взвешиваний на чашечных весах можно определить массы оставшихся гирек?
Задачу решили:
105
всего попыток:
119
В некотором механизме три шестерёнки различных диаметров связаны между собой так, что самая большая из них касается двух других, причём на всех трёх шестерёнках вместе имеется 60 зубцов. Когда самая большая шестерня к полным четырём оборотам не доходит на 20 зубцов, две другие делают 5 и 10 полных оборотов. Сколько зубцов на каждой шестерёнке? (В ответе введите произведение трёх найденных чисел.)
Задачу решили:
65
всего попыток:
99
Сколько существует различных троек простых чисел таких, что произведение любых двух из них при делении на третье даёт в остатке 1? (Тройки, полученные друг из друга перестановками, считаются одинаковыми.)
Задачу решили:
122
всего попыток:
240
Сколько решений имеет уравнение x2−8[x]+7=0, где [x] —целая часть числа x?
Задачу решили:
66
всего попыток:
434
Участников математической олимпиады пересчитали и спросили, кто поедет в воскресенье на экскурсию. Каждый участник сделал следующее заявление: "Я поеду, если всего поедет не менее n2/N и не более n участников олимпиады, где n — мой номер, а N — общее число участников олимпиады". Какое наибольшее число участников смогут поехать на экскурсию, если N=125?
Задачу решили:
72
всего попыток:
130
Угол между часовой и минутной стрелками — один градус. Секундная стрелка — ровно на 12. Который час? В ответе введите без пробела часы (от 0 до 11) и минуты (от 00 до 59). Если задача имеет более одного решения, введите их в порядке возрастания. (Например, если ответ "0:15 и 11:01", введите 0151101; а вместо 14:25 введите 2:25.)
Задачу решили:
102
всего попыток:
128
Пусть аn=n2+n+1 и bn=an·an+1 (n=1,2,3...). Сколько членов последовательности {bn} НЕ являются членами последовательности {an}?
Задачу решили:
86
всего попыток:
110
В квадратную таблицу n×n записаны все натуральные числа от 1 до n2 в следующем порядке: числа от 1 до n — в первой сверху строке слева направо, числа от n+1 до 2n — во второй сверху строке слева направо, и т. д. Выберем n чисел из этой таблицы так, чтобы из каждой строки было выбрано ровно 1 число и из каждого столбца было выбрано ровно 1 число. Какие значения может принимать сумма всех выбранных нами чисел? В ответе запишите сумму всех возможных значений при n=2011.
Задачу решили:
59
всего попыток:
154
Какое наибольшее число точек можно выбрать на отрезке [0;1] так, чтобы на любом отрезке [a;b], который является частью отрезка [0;1], было не больше 1+100(b–a)2 точек?
Задачу решили:
129
всего попыток:
209
Найдите наименьшее значение выражения при .
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|