Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
62
всего попыток:
251
Имеется предмет, о котором известно, что его вес составляет целое число кг от 1 до 27. Также есть чашечные весы, на обе чашки которых можно класть гири. Определите наименьшее количество гирь, с помощью которых можно определить вес предмета.
Задачу решили:
44
всего попыток:
86
Число называется оранжевым, если оно образуется при выписывании друг за другом без пробелов (в десятичной системе счисления) всех натуральных чисел от 1 до N, где N>1. Например, числа 12345 и 123456789101112131415 являются оранжевыми, а 1 — нет. Сколько решений в оранжевых числах имеет уравнение xy=z?
Задачу решили:
174
всего попыток:
252
Шла торговка на рынок продавать пирожки. По дороге она проголодалась и съела сначала пирожок и половину остатка, затем ещё пирожок и пол-остатка, затем ещё пирожок и пол-остатка. А затем по дороге воры украли 7 пирожков и пол-остатка. На рынок торговка принесла 1 пирожок. Сколько пирожков было?
Задачу решили:
82
всего попыток:
206
Сколько понадобится четвёрок, чтобы записать в десятичной системе счисления все натуральные числа от 1 до 1111111111? (Последнее число состоит из 10 единиц.)
Задачу решили:
87
всего попыток:
123
Десятизначное число составлено следующим образом: первая цифра равна количеству единиц в этом числе, вторая цифра — количеству двоек и т.д., десятая цифра — количеству нулей. Найдите сумму всех таких чисел.
Задачу решили:
33
всего попыток:
76
Ученику задали напечатать на пишущей машинке подряд первые 2011 натуральных чисел — каждое следующее число на новой строке. Но у пишущей машинки оказалась сломана клавиша с символом 2; и ученик решил пропускать все числа, в записи которых требуется эта клавиша, но напечатать 2011 чисел. Однако он был трудоголиком, вошёл во вкус дела и напечатал 2011·1020 чисел. Какое число было напечатано на последней строке?
Задачу решили:
64
всего попыток:
156
Перед двумя игроками кучка из 1000 спичек. В начале игры первый игрок берёт из неё любое количество спичек от 1 до 999, а затем каждый из игроков по очереди берёт любое число оставшихся спичек, но не больше, чем перед этим взял другой игрок. Ходы делаются по очереди, а выигрывает тот, кто возьмёт последнюю спичку. Какое наименьшее количество спичек должен взять в начале игры первый игрок, чтобы обеспечить себе победу при любых ходах второго игрока?
Задачу решили:
60
всего попыток:
150
Мальчики и девочки выбрали каждый по натуральному числу, мальчики - a1, a2, ..., a10, девочки - b1, b2, ..., b10. Известно, что для чисел выполняются следующие условия:
Задачу решили:
99
всего попыток:
132
Найдите сумму всех простых чисел p таких, что число p2 + 11 имеет ровно 6 различных делителей (включая единицу и само число).
Задачу решили:
109
всего попыток:
181
На клетчатой бумаге нарисован прямоугольник 3 на 10 (3 строки и 10 столбцов). Некоторые клетки закрашены. В каждой строке и в каждом столбце есть хотя бы одна закрашенная клетка. Строки содержат 4, 5 и 6 закрашенных клеток. Найти максимальное число закрашенных столбцов (столбец называется закрашенным, если все его клетки закрашены).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|