Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
46
всего попыток:
84
В остроугольном треугольнике АВС отрезки ВО и СО (где О - центр описанной окружности) продолжены до пересечения в точках D и Е со сторонами АС и АВ треугольника. Оказалась, что угол BDE равен 50 градусам, угол CED равен 30 градусов. Найдите величину самого большого угла треугольника АВС в градусах.
Задачу решили:
82
всего попыток:
176
В треугольнике ABC BC:CA:AB = 3:5:4. На отрезке AB выбрана точка E, а на AC точка F, причем AE:AF = 3:2. Пусть M - середина BC, Q - пересечение AM и EF. Найти значение
Задачу решили:
44
всего попыток:
92
На клетчатой бумаге отмечены точки A и B. Примем длину стороны клетки за 1. Посчитайте количество маршрутов идущих из A в B по сторонам клеток и имеющих длину 11. (Маршрут может менять направление только в углах клеток. Допускаются маршруты, проходящие несколько раз через одну вершину (включая A и B) или сторону клетки.)
Задачу решили:
61
всего попыток:
162
Точка М - середина стороны BC треугольника ABC. Известно, что. Найдите максимальное значение . Ответ дайте в градусах.
Задачу решили:
45
всего попыток:
111
Множество Q(n) состоит из слов длины 2n, в записи которых ровно n букв A и n букв B, обладающих следующим свойством: для каждого k ≤ 2n среди первых k букв количество букв B не меньше, чем букв A. Найдите мощность Q(8).
Задачу решили:
36
всего попыток:
142
Проведём сечение трёхмерного куба, перпендикулярное диагонали куба и проходящее через её середину. В результате получится правильный шестиугольник. А теперь рассмотрим четырёхмерный куб. Какое тело получится в сечении, перпендикулярном диагонали четырёхмерного куба и проходящем через её середину? В ответе укажите сумму количеств вершин и граней.
Задачу решили:
51
всего попыток:
105
В треугольник ABC со сторонами AB=62, BC=962, AC=960, будем вписывать n окружностей одинакового радиуса (n от 1 до бесконечности, натуральное) так, что все они касаются стороны AC, соседних окружностей, а крайние окружности касаются сторон AB и BC соответственно. (см.рис.). Существует конечная последовательность k натуральных чисел ai {a1,a2,a3,...,ak} таких, что если вписывать ai окружностей в данный треугольник, у полученных окружностей радиусы будут натуральными числами. Найдите эту последовательность. В ответе укажите сумму всех ее членов .
Задачу решили:
15
всего попыток:
727
Площадь выпуклого пятиугольника ABCDE равна 180. На его сторонах AB, BC, CD, DE и EA выбраны точки K, L, M, N и O так, что |AK|/|KB|=|BL|/|LC|=|CM|/|MD|=|DN|/|NE|=|EO|/|OA|=2. Найдите минимальное и максимальное целочисленные значения площади пятиугольника KLMNO. В ответе укажите их произведение.
Задачу решили:
66
всего попыток:
88
Площадь четырёхугольника равна 67. Найдите минимально возможное значение суммы произведений длин его противоположных сторон (т.е. выражения ac+bd, если одна пара противоположных сторон имеет длины a и c, а другая пара - b и d).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|