Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
23
всего попыток:
76
С вершины небольшой горы к ее подножью проложена железная дорога с боковым тупиком, вмещающим 10 вагонов. Все возможные направления движения показаны на картинке стрелками. На вершине горы находятся 10 вагонов с номерами от 1 до 10, но их порядок неизвестен. Работа машиниста Вовы - свозить по одному вагоны так, чтобы внизу они оказались в обычном порядке: 1, 2, ..., 10. Для сортировки можно пользоваться тупиком. На картинке показаны два случая, когда всего 5 вагонов - в одном варианте Вова может выполнить задание, в другом - нет. Найдите вероятность того, что Вова не сможет выполнить задание (для 10 вагонов).
Задачу решили:
44
всего попыток:
66
Найдите остаток от деления многочлена (15x996 + 2x335 – 11x3 + 125x + 646) на многочлен (– 2x2 – 2). В ответе укажите сумму коэффициентов остатка.
Задачу решили:
27
всего попыток:
36
Имеется 100 сейфов, каждый из которых можно открыть только своим ключом. Ключи случайным образом поместили по одному во все сейфы и захлопнули дверцы. Затем взломали 2 сейфа и получили 2 ключа. Найдите вероятность того, что получится открыть все остальные сейфы не взламывая.
Задачу решили:
29
всего попыток:
40
Решите уравнение x2 + y2 = (x + 1)3 в целых числах.
Задачу решили:
15
всего попыток:
48
Любитель кубика Рубика снял все 54 наклейки с кубика 3х3х3 и переклеил их вновь в случайном порядке. Какова вероятность собрать такой кубик Рубика? Собранным считается кубик, у которого все грани одного цвета. В качестве ответа введите число из первых трёх цифр вероятности, опуская начальные нули. Например, если вероятность равна 0,00040756…, то в ответ вносится число 407.
Задачу решили:
4
всего попыток:
47
На рисунке изображён пример полиомино - фигуры, состоящей из какого-то количества смежных клеток размером 1x1 на листе тетрадки в клеточку: На том же рисунке также изображён квадрат размером 9x9, в котором данное полиомино помещается целиком. В этом примере полиомино занимает на листе тетрадки 10 строк и 11 столбцов, а стороны большого квадрата наклонены к сторонам клеточек под углами с тангенсами 2 и -1/2. На рисунке также выделены вершины полиомино, лежащие на сторонах большого квадрата. Нас интересует количество различных (не конгруэнтных) полиомино, обладающих следующими двумя свойствами:
Разобъём все полиомино, обладающие двумя указанными свойствами, по количествам строк и столбцов, которые они занимают на листе тетрадки. Обозначим: В ответ введите эти 5 чисел подряд, без пробелов, слева направо: n1n2n3n4n5
Задачу решили:
10
всего попыток:
30
На гранях кубика написаны все буквы слова "ХОРОШО" - по одной букве на грань. Буква О написана 3 раза, но мы не различаем эти буквы - у нас просто есть 4 различных символа Х, О, Р, Ш. Сколько раз в среднем надо бросить кубик, чтобы мы увидели все эти 4 символа (в любой последовательности)?
Задачу решили:
19
всего попыток:
72
Дедушке прописали принимать по полтаблетки каждый день в течение 60 дней. В пузырьке было 30 целых таблеток. В первый день он вытряхнул из пузырька таблетку и разломал ее пополам, одну половинку принял, а вторую положил обратно в пузырёк. Каждый следующий день он случайным образом вытряхивал из пузырька таблетки - если это оказывалась целая таблетка, то он ее разламывал и принимал половинку, а вторую клал в пузырёк, если выпадала половинка, то он принимал её. На какой день с вероятностью не менее 1/2 выпадет половинка таблетки?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|