Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
107
всего попыток:
499
Сколькими разными способами можно раскрасить рёбра куба тремя цветами так, чтобы в каждой вершине сходились рёбра трёх разных цветов? (Две раскраски считаются разными, если они не переходят друг в друга при любом вращении куба.)
Задачу решили:
220
всего попыток:
486
Какое наибольшее число фотографов могут одновременно сфотографировать друг друга, используя широкоугольные объективы, позволящие делать кадры углового размера 173°? (Фотографы — это различные точки плоскости.)
Задачу решили:
195
всего попыток:
940
В шляпе лежат 5 карточек: у одной обе стороны красные, у другой обе стороны чёрные, а у каждой из трёх остальных одна сторона красная, а другая чёрная. Все стороны всех карточек можно отличить друг от друга только по цвету. Закрываем глаза, наудачу вытаскиваем одну карточку и кладём её на стол. Открываем глаза и видим, что её верхняя сторона — красная. Сколько процентов составляет вероятность, что её нижняя сторона — тоже красная?
Задачу решили:
260
всего попыток:
855
На какое минимальное число остроугольных треугольников можно разрезать квадрат?
Задачу решили:
236
всего попыток:
589
Имеется 2009 мешочков с 1, 2, 3,..., 2008 и 2009 монетами. Каждый день разрешается взять из одного или нескольких мешочков по одинаковому числу монет. За какое минимальное число дней можно взять все монеты?
Задачу решили:
157
всего попыток:
570
Сколько клеток составляет площадь выпуклого 16-угольника минимального периметра, вершины которого находятся в узлах клетчатой бумаги?
Задачу решили:
239
всего попыток:
492
Гусеница сидит в углу закрытой коробки 27×41×51 см. В самом дальнем от неё углу коробки есть маленькое отверстие, через которое она хочет выбраться на свободу. Какое наименьшее число сантиметров ей придётся для этого преодолеть?
Задачу решили:
273
всего попыток:
477
Вы — участник всем известной телевизионной игры, и Вам нужно выбрать одну из трёх шкатулок, в одной из которых находится Приз. Вы выбираете одну из шкатулок, например, №1, после чего всем известный ведущий, который знает, где Приз, открывает одну из оставшихся шкатулок, например, №3, где Приза (естественно) нет. После этого он спрашивает Вас, не желаете ли Вы изменить свой выбор и вместо шкатулки №1 выбрать шкатулку номер №2. Какова максимальная вероятность выбрать шкатулку с Призом при таких условиях игры? (Ответ представьте в виде несократимой дроби вида p/q, где p и q — натуральные числа.)
Задачу решили:
132
всего попыток:
1048
На полу коридора длиной 120 метров лежат 25 ковровых дорожек общей длиной 600 метров. Каково максимально возможное число кусков пола, не застеленных дорожками?
Задачу решили:
149
всего попыток:
200
Существует теория, что ночная бабочка для навигации использует Луну: она летит по прямой, поддерживая постоянным угол между направлением своего полёта и направлением на Луну. Если же она примет за Луну уличный фонарь или другой близкий к ней источник света, то полетит вокруг него по спирали, приближаясь или удаляясь от него. (Пограничный случай полёта по окружности бывает лишь в теории.) Через сколько секунд ночная бабочка долетит до фонаря, если он находится в 18-ти метрах от неё, летит она со скоростью 1 м/с и поддерживает угол 60° между направлением своего полёта и направлением на фонарь? (Бабочка и фонарь — это точки в пространстве.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|