Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
33
всего попыток:
55
N цифр — единицы и двойки — расположены по кругу. Изображенным назовем число, образуемое несколькими цифрами, расположенными подряд (по часовой стрелке или против часовой стрелки). При каком наименьшем значении N все четырехзначные числа, запись которых содержит только цифры 1 и 2, могут оказаться среди изображенных?
Задачу решили:
37
всего попыток:
65
На вечеринку пришли 100 человек. Затем те, у кого не было знакомых среди пришедших, ушли. Затем те, у кого был ровно 1 знакомый среди оставшихся, тоже ушли. Затем аналогично поступали те, у кого было ровно 2, 3, 4, . . . , 99 знакомых среди оставшихся к моменту их ухода. Какое наибольшее число людей могло остаться в конце?
Задачу решили:
14
всего попыток:
29
У вас 31 монетка, 2 из них фальшивые и имеют одинаковый вес (настоящие монетки также имеют одинаковый вес). Вы знаете какие именно и что они легче, а приятель знает, что фальшивых монеток ровно 2, но не знает легче они или тяжелей. За какое количество взвешиваний на чашечных весах без гирь и как вы сможете показать приятелю, что они легче и предъявить их?
Задачу решили:
38
всего попыток:
123
Есть 100 коробок, пронумерованных числами от 1 до 100. В одной коробке лежит приз и ведущий знает, где он находится. Зритель может послать ведущему пачку записок с вопросами, требующими ответа "да" или "нет". Ведущий перемешивает записки в пачке и, не оглашая вслух вопросов, честно отвечает на все. Какое наименьшее количество записок нужно послать, чтобы наверняка узнать, где находится приз?
Задачу решили:
33
всего попыток:
68
Найти максимальное натуральное число n ≤ 100 для которого найдутся такие положительные рациональные, но не целые числа a и b, что оба числа a + b и an + bn — целые.
Задачу решили:
53
всего попыток:
83
По окружности радиуса 40 катится колесо радиуса 18. В колесо вбит гвоздь, который ударяясь об окружность, оставляет на ней отметки. Сколько всего таких отметок оставит гвоздь на окружности? Сколько раз прокатится колесо по всей окружности, прежде чем гвоздь попадет в уже отмеченную ранее точку? Ответ введите в виде рациональной дроби (количество отметок)/(количество оборотов), например, 15/10.
Задачу решили:
67
всего попыток:
75
Найдите сумму всех натуральных n > 1 для которых n3 − 3 делится на n − 1.
Задачу решили:
44
всего попыток:
55
Найдите все пары взаимно простых чисел a и b (a > b), для которых (a + b)/(a2 − ab + b2) = 3/13. В ответе укажите сумму значений всех пар (ai+bi).
Задачу решили:
53
всего попыток:
87
Пусть S(n) - сумма цифр натурального числа в десятичной записи. Найдите максимальное число не превосходящее 2015, которое может быть представлено в виде n+S(n).
Задачу решили:
58
всего попыток:
97
Красная Шапочка вышла днем к бабушке в X часов Y минут и пришла в Y часов Z минут, потратив на дорогу Z часов X минут. Чему равно X?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|