Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
527
всего попыток:
1231
Расписание движения требует от водителя междугороднего автобуса, чтобы он проезжал ровно 60 км за любой промежуток времени длительностью ровно 1 час (т.е. в любой момент времени после первого часа своего пути автобус должен быть на расстоянии 60 км от того места, где был час назад). Какое максимальное расстояние сможет проехать автобус за 2 часа 50 минут, если водитель будет строго придерживаться расписания? (Ответ выразите в км, единицы измерения не указывайте.)
Задачу решили:
299
всего попыток:
397
Про индийского математика-самородка С.А.Рамануджана говорили, что каждое натуральное число было его близким другом. Однажды английский математик Г.Г.Харди сказал ему: "Сегодня я ехал на такси с совершенно неинтересным номером ..." — после чего назвал некое четырёхзначное число. "Почему же неинтересным?" — сразу ответил Рамануджан: "Ведь это наименьшее число, которое может быть представлено в виде суммы двух кубов натуральных чисел двумя различными способами!" Какой был номер такси?
Задачу решили:
164
всего попыток:
717
Улитка ползёт вперед по прямой с непостоянной скоростью. Назад она не поворачивает, но может останавливаться. Несколько человек наблюдают за ней по очереди: каждый из них (кроме первого) начинает наблюдение позже, чем начинает предыдущий, но раньше, чем он заканчивает. Каждый из наблюдателей следит за улиткой ровно 10 минут и замечает, что за это время она проползла ровно 10 см. Количество наблюдателей неизвестно, но общее время их наблюдения составляет 1 час: последний заканчивает наблюдать ровно через час после того, как начинает первый. Какое минимальное расстояние может проползти улитка за 1 час наблюдений при этих условиях? (Ответ дать в сантиметрах.)
Задачу решили:
177
всего попыток:
627
Есть картонный невыпуклый стоугольник. Если разрезать его один раз по прямой линии, то он распадётся на несколько новых многоугольников. Какое максимальное число треугольников может среди них получиться?
(Предлагалась на "Первом математическом")
Задачу решили:
226
всего попыток:
551
Каждое из 2009 чисел равно 1, 0 или -1. Какое наименьшее значение может принимать сумма произведений всех пар, составленных из этих чисел?
(Предлагалась на "Первом математическом")
Задачу решили:
198
всего попыток:
439
В футбольном турнире каждая команда сыграла с каждой по одному разу. Ровно треть команд хотя бы раз сыграли вничью, а ровно 75% остальных команд не обошлись без поражений. При этом только одна команда не проиграла ни одного матча. Сколько матчей турнира окончились победой одной из команд?
Задачу решили:
255
всего попыток:
569
В романе 50 глав: 25 с нечётным количеством страниц и 25 — с чётным. Первая глава начинается с нечётной страницы, а каждая из остальных — с новой страницы, сразу следующей за предыдущей главой. Какое максимальное число глав может начинаться с чётной страницы?
Задачу решили:
132
всего попыток:
602
Даны 4 точки на плоскости, не лежащие на одной окружности. Каково максимально возможное число окружностей, равноудалённых от всех точек?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|