Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
27
всего попыток:
45
Таблице из 9 строк и 2016 столбцов заполнена числами от 1 до 2016, каждое — по 9 раз. При этом в любом столбце числа различаются не более, чем на 3. Найдите минимальную возможную сумму чисел в первой строке.
Задачу решили:
56
всего попыток:
67
В восточном городе 2/3 мужчин состоят в браке и 1/2 женщин замужем. Причем мужчины имеют по одной, две, три и четыре жены поровну. Какова доля,состоящих в браке,относительно всего населения города. Ответ представить в виде рациональной дроби.
Задачу решили:
15
всего попыток:
17
Имеется таблица 1000 х 1000, все клетки которой изначально пусты. Два игрока-терминатора соревнуются в следующей игре. За один ход можно записать в любую незанятую клетку таблицы любое натуральное число от 1 до 106, если такого числа еще нет в таблице. Игроки записывают числа, пока не заполнят всю таблицу. Пусть А количество строк, в каждой из которых сумма чисел делится нацело на 106, а В – количество столбцов, в каждом из которых сумма чисел делится нацело на 106. Первый игрок выигрывает, если А > В, иначе выигрывает второй игрок. Кто из игроков сможет выиграть независимо от игры соперника? (Укажите номер победителя: 1 или 2.)
Задачу решили:
35
всего попыток:
108
Друзья пришли в гости и их рассадили по столам. За половиной столов сидело по 5 друзей, в за второй половиной столов по x. Когда всех друзей опросили сколько за столом сидит их друзей, то в среднем получилось 16. Найдите x.
Задачу решили:
28
всего попыток:
94
По кругу написаны 29 ненулевых цифр. Из каждой пары соседних цифр составили двузначное число (при обходе по часовой стрелке первая цифра - число десятков, вторая - число единиц). При этом произведение получившихся 29 чисел является полным квадратом натурального числа. Найти минимальную сумму всех цифр.
Задачу решили:
36
всего попыток:
40
Натуральные числа k, m, n больше 1 и взаимно просты, при этом kmn=10(k+m+n). Найти минимальное значение km+mn+nk.
Задачу решили:
41
всего попыток:
75
Вова и Маша печатают свои собственные деньги, у каждого свои купюры одного достоинства X и Y, соответственно. Как выяснилось, при помощи комбинации купюр можно сложить почти любые положительные целые числа, кроме 15 чисел. Одним из таких чисел является 18. Найти X+Y.
Задачу решили:
44
всего попыток:
146
Найти количество натуральных решений уравнения x2+10!=y2.
Задачу решили:
32
всего попыток:
54
Найти максимальное натуральное число N такое, что для некоторого натурального n и нечетного простого p верно: p3n+1+pn+1=Np.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|