Лента событий:
fortpost решил задачу "Три числа и степени" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
64
всего попыток:
209
Каждую грань куба разбили на 16 равных квадратиков, которые раскрасили в красный, синий и белый цвета так, что квадраты, имеющие общую сторону, оказались окрашены в разные цвета. Найдите наибольшее возможное число красных квадратов.
Задачу решили:
64
всего попыток:
182
Каждую клетку прямоугольника 6×8 раскрасили в один из 12 различных цветов. Пара цветов называется плохой, если найдутся две клетки, имеющие общую сторону и закрашенные этими цветами. Найдите наименьшее число плохих пар.
Задачу решили:
26
всего попыток:
31
Сколькими способами можно записать все различные целые числа от 1 до n в одну строку так, чтобы выполнялось следующее условие: где-то после любого числа k, написанного не на последнем месте, должно встретиться хотя бы одно из чисел k−1 и k+1?
Задачу решили:
19
всего попыток:
81
В оранжерее на космической станции в виде прямоугольника 713×137 расставлены горшки с цветами. На каждом цветке сидит по одной бабочке. Трижды хлопала дверь, и всякий раз каждая из 713×137 бабочек перелетала по диагонали на соседний цветок. После каждого хлопка на некоторых цветах оказывалось по несколько бабочек, а на некоторых — ни одной, и при этом каждая бабочка, в очередной раз перелетая, не возвращалась на свой прежний цветок. Найдите наименьшее возможное число цветов, на которых не сидит ни одной бабочки после трёх хлопков.
Задачу решили:
48
всего попыток:
135
Каждую грань параллелепипеда 3х5х7 разбили на единичные квадратики, которые раскрасили в красный, синий и белый цвета так, что квадраты, имеющие общую сторону, оказались окрашены в разные цвета. Найдите наибольшее возможное число красных квадратов.
Задачу решили:
44
всего попыток:
92
На клетчатой бумаге отмечены точки A и B. Примем длину стороны клетки за 1. Посчитайте количество маршрутов идущих из A в B по сторонам клеток и имеющих длину 11. (Маршрут может менять направление только в углах клеток. Допускаются маршруты, проходящие несколько раз через одну вершину (включая A и B) или сторону клетки.)
Задачу решили:
45
всего попыток:
111
Множество Q(n) состоит из слов длины 2n, в записи которых ровно n букв A и n букв B, обладающих следующим свойством: для каждого k ≤ 2n среди первых k букв количество букв B не меньше, чем букв A. Найдите мощность Q(8).
Задачу решили:
36
всего попыток:
142
Проведём сечение трёхмерного куба, перпендикулярное диагонали куба и проходящее через её середину. В результате получится правильный шестиугольник. А теперь рассмотрим четырёхмерный куб. Какое тело получится в сечении, перпендикулярном диагонали четырёхмерного куба и проходящем через её середину? В ответе укажите сумму количеств вершин и граней.
Задачу решили:
36
всего попыток:
156
На ипподроме происходит заезд восьми лошадей. Как много вариантов финишировать имеется, учитывая, что некоторые лошади могут придти к финишу одновременно (голова в голову)? (Две лошади могут финишировать тремя способами: А выигрывает, В выигрывает, А и B приходят одновременно).
Задачу решили:
52
всего попыток:
269
В куб с ребром 3 вписаны 2 шара: один диаметром 2, касается трех граней, нижней и двух боковых, другой стоит на первом и тоже касается трех граней - тех же боковых и верхней. Чему равен диаметр верхнего шара? Ответ ввести с точностью до 2 знаков после запятой.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|