img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 91
всего попыток: 208
Задача опубликована: 23.10.09 22:00
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

Погремушка состоит из синего кольца и надетых на него двенадцати шариков: девяти красных и трёх жёлтых. Сколько может быть выпущено различных погремушек? (Погремушка не меняется при её переворачивании и передвижении шариков по кольцу.)

Задачу решили: 43
всего попыток: 55
Задача опубликована: 24.10.09 16:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Абажур лампы сконструирован, чтобы освещать октант (трёхгранный угол с прямыми плоскими углами). Лампа расположена в центре кубической комнаты. Можно ли её абажур повернуть так, чтобы она не освещала ни одной вершины комнаты? 

Задачу решили: 154
всего попыток: 405
Задача опубликована: 27.10.09 10:00
Прислала: kuzia1616 img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: wsx

В некоторых клетках таблицы 100×100 стоят крестики. Каждый крестик является единственным либо в строке, либо в столбце. Какое наибольшее количество крестиков может стоять в таблице?

Задачу решили: 161
всего попыток: 280
Задача опубликована: 28.10.09 19:31
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

На ста карточках написаны различные целые числа от 1 до 100 (по одному числу на каждой карточке). Какое минимальное число карточек нужно наудачу взять, чтобы среди них обязательно нашлись три карточки, сумма чисел на которых делится на три? 

Задачу решили: 105
всего попыток: 136
Задача опубликована: 30.10.09 11:20
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 1-5 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Как посадить 9 яблонь в 10 рядов по 3 яблони в каждом? (Для особо придирчивых: сажать ряды из 4 и более яблонь не разрешается!) 

(Пожалуйста, присылайте решения только в виде файла!!!)
Задачу решили: 90
всего попыток: 124
Задача опубликована: 03.11.09 10:00
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Loks

Все вершины выпуклого многогранника расположены в целочисленных точках. Ни внутри, ни на гранях, ни на рёбрах многогранника других целочисленных точек нет. Найти наибольшее число его вершин. (Целочисленная точка — это точка, все три координаты которой являются целыми числами.)

Задачу решили: 139
всего попыток: 164
Задача опубликована: 09.11.09 12:08
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

На сторонах BC и CD квадрата ABCD выбраны точки E и F так, что периметр треугольника ECF равен половине периметра квадрата. Найдите величину угла EAF в градусах.

Задачу решили: 181
всего попыток: 270
Задача опубликована: 15.11.09 14:04
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Перед Вами тортик в форме куба, который нужно разрезать на 27 одинаковых кубиков. Какое наименьшее число разрезов Вам понадобится сделать, если разрешается резать сразу несколько кусков, которые перед этим можно как угодно переложить и перевернуть? (Каждый разрез осуществляется вдоль одной плоскости.)

Задачу решили: 85
всего попыток: 238
Задача опубликована: 21.11.09 15:15
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Найти такое наименьшее число n, что любой выпуклый 60-угольник является пересечением n треугольников.

Задачу решили: 83
всего попыток: 154
Задача опубликована: 24.11.09 10:00
Прислал: bbny img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100

Из клетчатой бумаги вырезали квадрат 8×8 и все клетки в нём перенумеровали. Сколько имеется способов вырезать из этого квадрата две клетки так, чтобы его оставшуюся часть можно было разрезать на прямоугольники 1x2?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.