img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 32
всего попыток: 56
Задача опубликована: 27.06.18 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Среди 100 жителей осторова есть те, кто всегда говорят правду и те, кто всегда лгут.  На вопрос гостя острова о том, сколько жителей осторова говорят правду, все жители дали ответы, при этом n-й по счету отвечающий утверждал, что на острове количество говорящих правду равно n2 по модулю 100. Сколько на острове лжецов?

Задачу решили: 46
всего попыток: 54
Задача опубликована: 25.07.18 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: zmerch

В целом числе последняя цифра 8, когда ее переставили в начало, то число стало в два раза больше. Найдите минимальное такое число.

Задачу решили: 63
всего попыток: 68
Задача опубликована: 31.08.18 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Чему равна площадь треугольника ABC?

tr3.jpg

Задачу решили: 55
всего попыток: 68
Задача опубликована: 03.09.18 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

На дне рождения присутствовало 100 гостей. Первому достался кусок торта размером 1%, второму 2% от оставшейся части, третьему - 3% от оставшейся части и так далее. Какой по счету гость получил наибольший кусок?

Задачу решили: 38
всего попыток: 53
Задача опубликована: 05.09.18 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: avilow (Николай Авилов)

±(x-1)±(x-1)±(x-1)±...±(x-1)=2018 (выражение x-1 встречается 2018 раз). Найти количество целых решений?

Задачу решили: 58
всего попыток: 69
Задача опубликована: 02.11.18 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

В квадрате ABCD на сторонах выбраны точки E, F, G, H так, что |EA|=|FB|=|GC|=|HD|. Квадрат разделен на части как указано на рисунке.

Т4 части квадрата

Известны площади трёх частей, найдите площадь четвертой.

Задачу решили: 55
всего попыток: 75
Задача опубликована: 07.11.18 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Внутри окружности проведены линии, как на рисунке.

Три линии в круге

Найдите радиус окружности.

Задачу решили: 37
всего попыток: 61
Задача опубликована: 13.05.19 08:00
Прислал: admin img
Источник: Элементы большой науки: elementy.ru
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Marutand

Класс из 16 человек писал математический тест, в котором к каждому заданию предлагались 4 возможных варианта ответа. После сдачи решений выяснилось, что ни у каких двух учеников не совпало более одного ответа. Какое наибольшее число заданий могло быть в таком тесте?

Задачу решили: 29
всего попыток: 34
Задача опубликована: 12.07.19 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: VFChistov (Виктор Чистяков)

Треугольник ABC вписан в окружность. Точки M и H такие, что отрезок AM является диаметром, а отрезок AH перпендикулярен стороне BC.

Треугольник и 2 линии

Докажите, что |BH|=|MC|.

Задачу решили: 33
всего попыток: 52
Задача опубликована: 22.07.19 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: anrzej

На плоскости расположен равносторонний треугольник с длиной стороны x и точка. От точки до вершин треугольника расстояния 3, 5 и 7. Найдите все возможные треугольники и соответствующие им длины стороны x. В ответ введите сумму квадратов полученных значений различных x.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.