Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
113
всего попыток:
135
Найдите наименьшее количество натуральных чисел, сумма квадратов которых равна 1995.
Задачу решили:
63
всего попыток:
184
Чему равно максимальное количество подряд идущих членов последовательности xn=n²+2010, наибольший общий делитель которых больше 1?
Задачу решили:
66
всего попыток:
434
Участников математической олимпиады пересчитали и спросили, кто поедет в воскресенье на экскурсию. Каждый участник сделал следующее заявление: "Я поеду, если всего поедет не менее n2/N и не более n участников олимпиады, где n — мой номер, а N — общее число участников олимпиады". Какое наибольшее число участников смогут поехать на экскурсию, если N=125?
Задачу решили:
72
всего попыток:
130
Угол между часовой и минутной стрелками — один градус. Секундная стрелка — ровно на 12. Который час? В ответе введите без пробела часы (от 0 до 11) и минуты (от 00 до 59). Если задача имеет более одного решения, введите их в порядке возрастания. (Например, если ответ "0:15 и 11:01", введите 0151101; а вместо 14:25 введите 2:25.)
Задачу решили:
77
всего попыток:
112
Каспениада (в дальнейшим для краткости именуемая Касей) задумала натуральное число и по секрету сообщила его Аппроксидону (Прокси). Йегиртон (Гиря) тоже задумал натуральное число и тоже по секрету сообщил его Прокси. Прокси вычислил сумму и произведение этих двух чисел, и один из результатов сообщил Касе и Гире. Результат был 2010. Узнав результат, Гиря сказал, что не знает, какое число задумала Кася. Услышав это, Кася сказала, что не знает, какое число задумал Гиря. Какое число задумала Кася?
Задачу решили:
102
всего попыток:
128
Пусть аn=n2+n+1 и bn=an·an+1 (n=1,2,3...). Сколько членов последовательности {bn} НЕ являются членами последовательности {an}?
Задачу решили:
76
всего попыток:
104
Найдите сумму: [(n+1)/2]+[(n+2)/4]+[(n+4)/8]+[(n+8)/16]+..., где [x] — наибольшее целое число, не превосходящее x. В ответе введите число цифр в её десятичной записи при n=102010.
Задачу решили:
126
всего попыток:
159
Пусть n — натуральное число, а S(n) — сумма цифр числа n. Сколько решений имеет уравнение n+S2(n)=2011?
Задачу решили:
129
всего попыток:
175
Найдите остаток от деления числа 11+1111+111111+...+11111111111111111111 на 100. (В последнем числе 10 единиц в основании степени и 10 — в показателе.)
Задачу решили:
70
всего попыток:
103
На плоскости проведены n прямых. Каждая пересекает ровно 2011 других. Найдите все возможные значения n. В ответе укажите сумму всех значений.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|