img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 91
всего попыток: 170
Задача опубликована: 11.03.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: casper

Внутри квадрата ABCD отмечена такая точка K, что углы KAC и KCD равны 19°. Сколько градусов составляет угол ABK?

Задачу решили: 83
всего попыток: 104
Задача опубликована: 23.03.11 08:00
Прислал: ZARIF img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: azat

Пусть I — точка пересечения биссектрис прямоугольного треугольника ABC. Обозначим через K, L и M точки, симметричные точке I относительно сторон треугольника ABC. Окружность, описанная около треугольника KLM, проходит через вершину B. Сколько градусов составляет угол ABC?

Задачу решили: 104
всего попыток: 232
Задача опубликована: 25.03.11 08:00
Прислал: Busy_Beaver img
Источник: Putnam Competition
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

Сколько решений в целых (необязательно положительных) числах имеет уравнение xy/(x+y)=2011?

Задачу решили: 48
всего попыток: 206
Задача опубликована: 20.05.11 08:00
Прислал: Timur img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Вычислите минимум функции  ,  где — такие неотрицательные действительные числа, что , а . В ответе укажите значение , округлённое до ближайшего целого.

Задачу решили: 83
всего попыток: 126
Задача опубликована: 25.05.11 08:00
Прислала: Marishka24 img
Источник: Индийская региональная олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zhekas (Евгений Сыромолотов)

Сколько различных действительных решений имеет уравнение: ? (Как обычно,  — это целая часть числа x, а — его дробная часть.)

Задачу решили: 78
всего попыток: 183
Задача опубликована: 10.06.11 08:00
Прислал: Timur img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: andervish (Андрей Вишневый)

Найдите все натуральные (целые положительные) решения уравнения . В ответе укажите сумму всех возможных значений .

Задачу решили: 77
всего попыток: 186
Задача опубликована: 20.06.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

В оранжерее на космической станции в виде прямоугольника 12×15 расставлены горшки с цветами. На каждом цветке сидит по одной бабочке. Хлопнула дверь, и каждая из 180-ти бабочек перелетела на соседний по диагонали цветок. После этого на некоторых цветах оказалось по несколько бабочек, а на некоторых — ни одной. Найдите наименьшее возможное число цветов, на которых не сидит ни одной бабочки.

Задачу решили: 96
всего попыток: 150
Задача опубликована: 22.06.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

Одна биссектриса равнобедренного тупоугольного треугольника в два раза длиннее другой. Сколько градусов составляет его тупой угол?

Задачу решили: 69
всего попыток: 191
Задача опубликована: 27.06.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

На листке написано несколько различных действительных чисел. Среди любых трёх из них обязательно найдутся два, сумма которых тоже написана на листке. Какое наибольшее количество чисел может быть на листке?

Задачу решили: 56
всего попыток: 183
Задача опубликована: 29.06.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

В настольной игре 20 фишек первоначально расположены в различных вершинах некоторого (необязательно правильного!) выпуклого 24-угольника. За один ход можно передвинуть любое число фишек в одном и том же направлении на одно и то же расстояние. Через какое наименьшее число ходов все фишки могут оказаться на одной прямой?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.