Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
92
всего попыток:
420
Длины двух высот треугольника равны 12 и 19. Сколько различных целых значений может принимать длина третьей высоты?
Задачу решили:
182
всего попыток:
229
Собранный мёд заполняет несколько 50-литровых бидонов. Если его разлить в 40-литровые бидоны, то понадобится на 5 бидонов больше, и один из них останется неполным. Если собранный мёд разлить в 70-литровые бидоны, то понадобится на 4 бидона меньше, и один из них тоже останется неполным. Сколько 50-литровых бидонов заполняет собранный мёд?
Задачу решили:
104
всего попыток:
214
На доске в строчку выписаны пять неотрицательных целых чисел A, B, C, D и E, сумма которых равна 2010. Найдите наибольшее значение суммы AB+BC+CD+DE попарных произведений соседних чисел.
Задачу решили:
215
всего попыток:
242
Сумма двух чисел равна 480. Если у первого числа зачеркнуть последнюю цифру, то получится второе число, делённое на 7. Найдите эти числа. (В ответе укажите первое число.)
Задачу решили:
135
всего попыток:
315
Найдите последние три цифры числа .
Задачу решили:
226
всего попыток:
250
Водитель автомашины грубо нарушил правила дорожного движения, чему свидетелями стали три студента-математика. Номер они не запомнили, но сообщили следующее: 1) номер был четырехзначный; 2) две первые цифры были одинаковы; 3) две последние цифры также были одинаковы; 4) это четырёхзначное число являлось точным квадратом. Помогите сотрудникам автоинспекции понять математиков и определите номер машины.
Задачу решили:
103
всего попыток:
222
В треугольнике проведены две медианы с длинами 20 и 30, угол между которыми равен 2·arctg(1/2). Найти площадь треугольника.
Задачу решили:
109
всего попыток:
316
Две лягушки, большая и маленькая, прыгают по дорожке. Сначала они находятся рядом и первый прыжок совершают одновременно. Затем маленькая лягушка прыгает на 5 см каждую секунду, а большая — на 20 см каждые 3 секунды, но зато после каждого третьего прыжка отдыхает лишние 6 секунд, т.е. два своих следующих прыжка она пропускает. В результате маленькая лягушка то обгоняет большую, то отстаёт от нее. После скольких (своих) прыжков маленькая лягушка опередит большую так, что большая лягушка её больше не нагонит? (Считайте, что все прыжки совершаются почти мгновенно.)
Задачу решили:
93
всего попыток:
174
Биссектрисы углов трапеции делят каждое из её оснований на три равные части. Найдите среднюю линию трапеции, если её высота равна . (Трапеция — это четырёхугольник, у которого ровно одна пара противолежащих сторон параллельна.)
Задачу решили:
60
всего попыток:
99
Про 4 действительных числа a1, a2, b1 и b2 известно, что (a1+b1)/(1+a1b1)=2005, (a2+b1)/(1+a2b1)=4015 и (a1+b2)/(1+a1b2)=1337. Найдите максимальное значение выражения (a2+b2)/(1+a2b2).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|