img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 39
всего попыток: 92
Задача опубликована: 13.08.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: trial (Трибунал Данилов)

Функция f: N→N такова, что f(f(n))+f(n+1)=n+2 для всех натуральных n. Чему равно f(2014)?

Задачу решили: 45
всего попыток: 158
Задача опубликована: 10.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Найти количество функций f: R→R таких, что для всех действительных x и y верно f(x+y)=f(x)f(y)f(xy).

Задачу решили: 35
всего попыток: 57
Задача опубликована: 24.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Пусть действительные числа x и y такие, что x2+y2=(x/y+y/x)2. Пусть m - наибольшее, а M - наименьшее возможные числа такие, что верно всегда m≤(x3y3+x2y+xy2+1)/x3y3≤M. Найдите M+m.

Задачу решили: 33
всего попыток: 47
Задача опубликована: 01.10.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: MMM (MMM MMM)

Рассмотрим пары неотрицательных целых чисел (xi,yi) удовлетворяющих равенству: 2x2+x=3y2+y таких, что x1+y1 < x2+y2 < ....

Найдите сумму первых 4-х пар значений x1+y1+x2+y2+x3+y3+x4+y4.

Задачу решили: 19
всего попыток: 96
Задача опубликована: 01.12.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Найдите максимальное целое число n такое, что существуют n действительных чисел x1, x2, ..., xn которые удовлетворяют неравенству для всех 1 ≤ i < j ≤ n:
100(1+xixj)2 ≤ 99(1+xi2)(1+xj2). 

Задачу решили: 47
всего попыток: 71
Задача опубликована: 14.01.15 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: levvol

Найти минимальное n такое, что количество нулей в конце числа (n+20)!×(n+15)! делится на 2015.

Задачу решили: 53
всего попыток: 64
Задача опубликована: 06.03.15 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: andervish (Андрей Вишневый)

Пусть f(n) функция, которая возвращает ближайшее целое к n1/4.
Найдите 1/f(1)+1/f(2)+1/f(3)+...+1/f(1995).

Задачу решили: 41
всего попыток: 132
Задача опубликована: 16.03.15 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Найти наименьшее положительное натуральное число, которое не может быть выражено в виде суммы:
1/f(1)+1/f(2)+...+1/f(N), где f(n) - ближайшее целое число к n1/6

Задачу решили: 30
всего попыток: 179
Задача опубликована: 24.04.15 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Известно, что cos(720°/7) является одним из корней уравнения

ax6-bx4+cx2-x-1=0, где a, b, c - натуральные числа. Найдите a+b+c.

Задачу решили: 36
всего попыток: 63
Задача опубликована: 27.04.15 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Zoxan

Пусть a, b, c, d, e - действительные числа такие, что:

c+a=15

ac+b+d=85

ad+bc+e=225

ae+bd=274

be=120

Найдите сумму всех возможных значений e.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.