Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
86
всего попыток:
183
На острове находится военная база. Каждый из солдат, служащих на этой базе, однажды сделал два заявления: 1) на базе нет и ста солдат, которые стреляют лучше меня; 2) по крайней мере тысяча солдат на базе владеют приёмами рукопашного боя лучше, чем я. Известно, что каждый из солдат либо всегда говорит правду, либо всегда лжёт. Кроме того, меткость стрельбы у всех солдат разная, как и уровень владения рукопашным боем. Сколько солдат служат на базе?
Задачу решили:
62
всего попыток:
267
Команда IF A=B HANG 1 на языке программирования MUMPS означает: "если A=B, то выполнить задержку программы на 1 секунду". В языке MUMPS почти нет понятия ТИПА ДАННЫХ (текстовые, целые числа, плавающая точка, короткие, длинные, логические и т.п.). Можно смело смешивать все данные, и всё будет выполняться по какой-то "естественной" логике каждой конкретной операции. Например, выражение 123 можно одновременно рассматривать и как число, и как строку. Кроме того, почти каждую команду можно писать не полностью, а только её начальные буквы. Например, вместо команды HANG можно писать HAN, или HA или только одну букву H. Длина написанной выше команды — 13 символов. Напишите эту же команду прописными латинскими буквами в кратчайшем виде.
Задачу решили:
90
всего попыток:
286
Двузначное число записали три раза подряд. Получилось шестизначное число. Какое наибольшее количество натуральных делителей (включая единицу и само число) может иметь это шестизначное число?
Задачу решили:
113
всего попыток:
135
Найдите наименьшее количество натуральных чисел, сумма квадратов которых равна 1995.
Задачу решили:
63
всего попыток:
184
Чему равно максимальное количество подряд идущих членов последовательности xn=n²+2010, наибольший общий делитель которых больше 1?
Задачу решили:
66
всего попыток:
434
Участников математической олимпиады пересчитали и спросили, кто поедет в воскресенье на экскурсию. Каждый участник сделал следующее заявление: "Я поеду, если всего поедет не менее n2/N и не более n участников олимпиады, где n — мой номер, а N — общее число участников олимпиады". Какое наибольшее число участников смогут поехать на экскурсию, если N=125?
Задачу решили:
72
всего попыток:
130
Угол между часовой и минутной стрелками — один градус. Секундная стрелка — ровно на 12. Который час? В ответе введите без пробела часы (от 0 до 11) и минуты (от 00 до 59). Если задача имеет более одного решения, введите их в порядке возрастания. (Например, если ответ "0:15 и 11:01", введите 0151101; а вместо 14:25 введите 2:25.)
Задачу решили:
77
всего попыток:
112
Каспениада (в дальнейшим для краткости именуемая Касей) задумала натуральное число и по секрету сообщила его Аппроксидону (Прокси). Йегиртон (Гиря) тоже задумал натуральное число и тоже по секрету сообщил его Прокси. Прокси вычислил сумму и произведение этих двух чисел, и один из результатов сообщил Касе и Гире. Результат был 2010. Узнав результат, Гиря сказал, что не знает, какое число задумала Кася. Услышав это, Кася сказала, что не знает, какое число задумал Гиря. Какое число задумала Кася?
Задачу решили:
102
всего попыток:
128
Пусть аn=n2+n+1 и bn=an·an+1 (n=1,2,3...). Сколько членов последовательности {bn} НЕ являются членами последовательности {an}?
Задачу решили:
76
всего попыток:
104
Найдите сумму: [(n+1)/2]+[(n+2)/4]+[(n+4)/8]+[(n+8)/16]+..., где [x] — наибольшее целое число, не превосходящее x. В ответе введите число цифр в её десятичной записи при n=102010.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|