img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 57
всего попыток: 82
Задача опубликована: 22.05.13 08:00
Прислал: leonid img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: kurtashew (радослав курташев)

Стороны треугольника 192, 120 и 168. Найдите расстояние от центра описанной окружности до ортоцентра (точка пересечения высот).

Задачу решили: 41
всего попыток: 113
Задача опубликована: 24.05.13 08:00
Прислала: nellyk img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Доска 16х16 разделена на квадраты со стороной длины 1. Сколько существует различных отрезков целочисленной длины с концами в узлах доски? (Поворачивать доску нельзя, т.е. для доски 1х1  ответ - 4.) 

Задачу решили: 54
всего попыток: 69
Задача опубликована: 07.06.13 08:00
Прислала: nellyk img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

На слет приехало 9876 ребят из разных школ. Каждый выходит погулять по лагерю. Кого он встретит первым? Встреча с любым из участников слета равновероятна. Мальчиков приехало больше, чем девочек. Известно, что вероятности встретить первым МАЛЬЧИКУ-МАЛЬЧИКА, МАЛЬЧИКУ-ДЕВОЧКУ, ДЕВОЧКЕ-ДЕВОЧКУ и ДЕВОЧКЕ-МАЛЬЧИКА можно расположить (не обязательно в таком порядке) так, чтобы они образовывали арифметическую прогрессию. Сколько мальчиков приехало на слет? Ввести сумму всех возможных значений.    

Задачу решили: 39
всего попыток: 52
Задача опубликована: 12.06.13 12:04
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Сколько существует  1 <= n <= 2013 таких, что существует перестановка a1, a2, ..., an чисел 1, 2, ..., n в которой ни для каких индексов i < j < k не выполняется равенство ak=(ai+aj)/2? 

Задачу решили: 27
всего попыток: 144
Задача опубликована: 26.06.13 08:00
Прислала: nellyk img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Найти максимальное натуральное N такое, что N! можно представить в виде суммы более чем 9-ти последовательных натуральных чисел не более, чем 666-ю способами.

Задачу решили: 25
всего попыток: 291
Задача опубликована: 19.08.13 08:00
Прислал: zmerch img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Есть отрезок длины 100. Петя выбирает натуральное число n. Вася и Петя по очереди (первым делает ход Вася) выбирают любой из имеющихся отрезков и делят его на два отрезка произвольной длины. После своего n-го хода Петя из полученных отрезков пробует составить выпуклый многоугольник максимальной целочисленной площади. При каком минимальном n Пете удастся это сделать независимо от игры Васи.

Задачу решили: 22
всего попыток: 155
Задача опубликована: 25.09.13 08:00
Прислал: nauru img
Источник: Санкт-Петербургская олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

У Санта-Клауса, как и обычно это бывает перед Новым Годом есть 8 различных подарков и несколько одинаковых мешков красного цвета (сам он синий). В каждом мешке лежит ровно два предмета(два мешка, два подарка или мешок и подарок). В частности, тот единственный мешок, который Санта-Клаус держит на плече, тоже содержит два предмета. Сколько существует  способов разложить подарки по мешкам?

Задачу решили: 52
всего попыток: 85
Задача опубликована: 30.09.13 08:00
Прислала: nellyk img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Найти периметр треугольника наибольшей площади со сторонами a, b, c такими, что

0 < a <= 3,5 <= b <= 5,5 <= c <= 7,5

Результат округлить до двух знаков после запятой.

Задачу решили: 26
всего попыток: 66
Задача опубликована: 25.10.13 08:00
Прислала: nellyk img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

В окружность Q целочисленного радиуса вписан четырехугольник ABCD, длины всех сторон которого - попарно различные целые числа. Более того, целочислены и длины диагоналей AC и BD.

tt.jpg

Пусть E - точка пересечения касательной к окружности Q, проведенной через точку C, с продолжением стороны AD.  Угол AEC равен углу ACD, и ABCD - четырехугольник минимальной площади, удовлетворяющий всем этим условиям. Найти произведение площадей треугольников DAB и DCB.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.