img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: avilow добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 71
всего попыток: 86
Задача опубликована: 11.04.12 08:00
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

Даны два многочлена, которые удовлетворяют условиям:   

a5 +  b+c5 + 5(a4(b + c) + b4(a + c) +c4(a + b)) = -1

a3(b2 + c2 ) + b3(a2 + c2) + c3(a2 + b2) + 2(a3bc + b3ac +c3ab ) + 3abc(ab + bc + ac) = 1/10

Чему равно a + b + c?

Задачу решили: 36
всего попыток: 142
Задача опубликована: 05.05.12 08:00
Прислал: zmerch img
Источник: ВЗМШ
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

Проведём сечение трёхмерного куба, перпендикулярное диагонали куба и проходящее через её середину. В результате получится правильный шестиугольник. А теперь рассмотрим четырёхмерный куб. Какое тело получится в сечении, перпендикулярном диагонали четырёхмерного куба и проходящем через её середину? В ответе укажите сумму количеств вершин и граней.

Задачу решили: 31
всего попыток: 48
Задача опубликована: 18.05.12 08:00
Прислал: zmerch img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: ChLD (Анатолий Лакеev)

Коэффициенты an приведённого многочлена P(x)=x2012+a1x2011+...+a2012 удовлетворяют условию

||an|-1|<1/2012  при   n=1,...,2012. 

Найдите максимальное количество отрицательных коэффициентов многочлена P(x) при условии, что действительных корней у него нет.

Задачу решили: 51
всего попыток: 105
Задача опубликована: 22.05.12 08:00
Прислал: Timur img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

В треугольник ABC со сторонами AB=62, BC=962, AC=960, будем вписывать n окружностей одинакового радиуса (n от 1 до бесконечности, натуральное) так, что все они касаются стороны AC, соседних окружностей, а крайние окружности касаются сторон AB и BC соответственно. (см.рис.). Существует конечная последовательность k натуральных чисел ai {a1,a2,a3,...,ak} таких, что если вписывать ai окружностей в данный треугольник, у полученных окружностей радиусы будут натуральными числами. Найдите эту последовательность. В ответе укажите сумму всех ее членов .

 

111.gif

Задачу решили: 15
всего попыток: 727
Задача опубликована: 30.05.12 08:00
Прислал: zmerch img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

Площадь выпуклого пятиугольника ABCDE равна 180. На его сторонах AB, BC, CD, DE и EA выбраны точки K, L, M, N и O так, что |AK|/|KB|=|BL|/|LC|=|CM|/|MD|=|DN|/|NE|=|EO|/|OA|=2. Найдите минимальное и максимальное целочисленные значения площади пятиугольника KLMNO. В ответе укажите их произведение.

Задачу решили: 119
всего попыток: 136
Задача опубликована: 01.06.12 08:00
Прислал: leonidr321 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: 0Vlas

Найдите максимально возможное целое значение отношения (x+y)^2/(xy), где x и y — положительные целые числа.

 

Задачу решили: 66
всего попыток: 88
Задача опубликована: 08.06.12 08:00
Прислал: TALMON img
Источник: Литовская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: 0Vlas

Площадь четырёхугольника равна 67. Найдите минимально возможное значение суммы произведений длин его противоположных сторон (т.е. выражения ac+bd, если одна пара противоположных сторон имеет длины a и c, а другая пара - b и d).

Задачу решили: 36
всего попыток: 156
Задача опубликована: 13.06.12 08:00
Прислал: levvol img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: 0Vlas

На ипподроме  происходит заезд восьми лошадей. Как много вариантов финишировать имеется, учитывая, что некоторые  лошади могут придти к финишу одновременно (голова  в  голову)?  (Две лошади могут финишировать тремя способами: А выигрывает, В выигрывает, А и B приходят одновременно).

Задачу решили: 49
всего попыток: 111
Задача опубликована: 18.06.12 22:57
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Через каждую вершину единичного куба проходит плоскость, все восемь плоскостей параллельны друг другу, а расстояния между соседними плоскостями равны. Найдите квадрат этого расстояния.

Задачу решили: 11
всего попыток: 78
Задача опубликована: 25.06.12 08:00
Прислал: katalama img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Возьмём полоску бумаги и начнём её разрезать и сгибать пополам. Обозначим

  • 0 - сгиб, при котором правая часть загибается вниз;
  • 1 - сгиб, при котором левая часть загибается вниз;
  • 2 - разрез, при котором правая часть подкладывается под левую;
  • 3 - разрез, при котором левая часть подкладывается под правую.

kata.png

Последовательность сгибов/разрезов назовём "фальцовкой".
В результате фальцовки мы получим "тетрадь".
Если теперь перенумеровать все страницы сверху вниз начиная с нуля, а затем развернуть тетрадь обратно в полоску, то увидим, что вся полоса (сверху и снизу) исписана числами. Последовательность чисел (сначала тех что сверху, затем тех, что снизу) назовем "раскладкой". Например, фальцовке '00' соответствует раскладка '0,7,4,3,2,5,6,1'. Здесь число 0 - находится на нулевом, а 7 на первом месте.

Определите на каком месте находится число 2012 в раскладке для следующей фальцовки: '2010201120122013'

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.