Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
27
всего попыток:
54
Пусть функция f(x) определена на множестве рациональных чисел и f(m/n)=1/n для взаимно-простых m и n. Найти произведение всех x таких, что f((x-f(x))/(1-f(x)))=f(x)+9/52.
Задачу решили:
30
всего попыток:
179
Известно, что cos(720°/7) является одним из корней уравнения ax6-bx4+cx2-x-1=0, где a, b, c - натуральные числа. Найдите a+b+c.
Задачу решили:
36
всего попыток:
63
Пусть a, b, c, d, e - действительные числа такие, что: c+a=15 ac+b+d=85 ad+bc+e=225 ae+bd=274 be=120 Найдите сумму всех возможных значений e.
Задачу решили:
40
всего попыток:
262
Стрелочные часы с тремя стрелками - часовой, минутной и секундной имеют плавный ход, то есть стрелки движутся плавно, без скачков по делениям. Определите, сколько существует моментов времени (чч:мм:сс:мкс и т.д.) углы между часовой и минутной, минутной и секундной и секундной и часовой составляют ровно 120 градусов.
Задачу решили:
8
всего попыток:
185
При некоторых положениях трёх стрелок часов (будем считать, что все стрелки двигаются плавно), одна из стрелок делит попалам угол между двумя другими стрелками. Сколько существует таких положений? [Угол α между двумя другими стрелками будем считать только: 0°<α<180°, и стрелка-биссектриса делит его на два одинаковых угла 0°<α/2<90°] Пример искомого положения можно наблюдать ровно в 1:12:00.
Задачу решили:
49
всего попыток:
67
Пусть a1=1, an+1=an+[an/n]+2 для натуральных n>1, где [x] - целая часть числа x. Найти a1997.
Задачу решили:
28
всего попыток:
41
Определите сумму всех действительных значений параметра a, при которых для любого натурального n выполняется тождество
Задачу решили:
33
всего попыток:
59
Имеется квадрат клетчатой бумаги размером 102×102 клеток и связная фигура неизвестной формы, состоящая из 101 клетки. Какое наибольшее число таких фигур можно с гарантией вырезать из этого квадрата? (Фигура, составленная из клеток, называется связной, если любые две ее клетки можно соединить цепочкой ее клеток, в которой любые две соседние клетки имеют общую сторону.)
Задачу решили:
40
всего попыток:
91
Загадано число от 1 до 144. Разрешается выделить одно подмножество множества чисел от 1 до 144 и спросить, принадлежит ли ему загаданное число. За ответ "да" надо заплатить 2 рубля, за ответ "нет" — 1 рубль. Какая наименьшая сумма денег необходима для того, чтобы наверняка угадать число?
Задачу решили:
34
всего попыток:
47
При каком наименьшем n шахматную доску n×n можно разрезать на квадраты 40×40 и 49×49 так, чтобы квадраты обоих видов присутствовали?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|