Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
38
всего попыток:
61
Луч света вышел из одного угла и, отразившись 6 раз от зеркальных сторон, попал в другой угол. Определите расстояние, которое он прошел. (Ответ введите округлив с точностью до двух знаков после десятичной запятой.)
Задачу решили:
15
всего попыток:
28
Внутрь куба со стороной ребра 1 вложен другой куб так, что ровно 6 его вершин лежат на 6 разных гранях исходного куба. Определите минимально возможный размер стороны внутреннего куба.
Задачу решили:
25
всего попыток:
64
На плоскости проведены три прямые, не пересекающиеся в одной точке. Известно, что радиусы всех окружностей, касающиеся всех трёх прямых - целые числа. Радиусы двух из этих окружностей равны 4 и 22. Найдите сумму радиусов всех остальных окружностей, касающихся тех же трёх прямых.
Задачу решили:
36
всего попыток:
80
Найдите количество многочленов P(x) четвертной степени с действительными коэффициентами таких, что P(x2)=P(x)*P(-x).
Задачу решили:
27
всего попыток:
95
40 пиратов и капитан делят клад в 100 золотых монет. Пираты хотят получить вместе 80 монет, а капитан хочет получить все. Он предлагает игру. Капитан делит все монеты на 2 кучки, потом на 3 и так далее, пока все кучки не станут равными одной монете. Всего 99 ходов. Если на каком-либо ходе пираты найдут 40 кучек, сумма монет в которых равна 80, то они получают эти деньги. На каком минимальном ходу пираты обязательно получат деньги, как бы ни делил их капитан?
Задачу решили:
15
всего попыток:
58
На доске рисуют звезду - замкнутую пятизвенную ломаную. Во внутренний пятиугольник этой звезды вписывают ешё одну звезду и так далее, как показано на рисунке. Сколько четырёхугольников будет нарисовано, когда число звёзд, построенных таким образом, достигнет 100? Считаются и выпуклые, и вогнутые 4-угольники. Но не считаются вырожденные и самопересекающиеся.
Задачу решили:
41
всего попыток:
43
1+xz+yz=НОК(xz,yz), где x, y и z - натуральные числа, а НОК - наименьшее общее кратное. Найти наибольшее значение произведения xyz.
Задачу решили:
15
всего попыток:
16
Укажите необходимое и достаточное условие для целого числа N такого, что для любых многочленов с действительными коэффициентами P(x) и Q(x), для которых P(Q(x)) является многочленом степени N, существует действительное число a, при котором P(a)=Q(a).
Задачу решили:
32
всего попыток:
34
Натуральное число n не делится на 3. Пусть A(n) - это сумма делителей числа n, которые при делении на 3 дают в остатке 1, и B(n) - это сумма делителей, которые при делении на 3 дают в остатке 2. Найдите сумму всех таких n, для которых |A(n)-B(n)|2 < n.
Задачу решили:
25
всего попыток:
49
Площади квадратов BKLM и ABCD соответственно равны 2 и 25. Угол CBK тупой. Точки A, D, L, M лежат на окружности, точка B общая. Найдите тангенс угла ABK.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|