img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 386
всего попыток: 1340
Задача опубликована: 12.03.09 12:58
Прислал: demiurgos img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: IrineK (Ирина Каминкова)

При каком n в классе из n учеников вероятность наличия двух учеников, которые празднуют свои дни рождения в один и тот же день, наиболее близка к 1/2?

Задачу решили: 388
всего попыток: 753
Задача опубликована: 01.04.09 22:49
Прислал: demiurgos img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: vitsel (Виталий Леонтьев)

  p

|sin(2009x)|dx = ?

0

Задачу решили: 195
всего попыток: 940
Задача опубликована: 13.05.09 09:32
Прислал: demiurgos img
Источник: Г.Гамов, М.Стерн "Занимательные задачи"
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: casper

В шляпе лежат 5 карточек: у одной обе стороны красные, у другой обе стороны чёрные, а у каждой из трёх остальных одна сторона красная, а другая чёрная. Все стороны всех карточек можно отличить друг от друга только по цвету. Закрываем глаза, наудачу вытаскиваем одну карточку и кладём её на стол. Открываем глаза и видим, что её верхняя сторона — красная. Сколько процентов составляет вероятность, что её нижняя сторона  — тоже красная?

Задачу решили: 273
всего попыток: 477
Задача опубликована: 20.05.09 22:17
Прислал: demiurgos img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: God_Gefest (Илья Закирзянов)

Вы — участник всем известной телевизионной игры, и Вам нужно выбрать одну из трёх шкатулок, в одной из которых находится Приз. Вы выбираете одну из шкатулок, например, №1, после чего всем известный ведущий, который знает, где Приз, открывает одну из оставшихся шкатулок, например, №3, где Приза (естественно) нет. После этого он спрашивает Вас, не желаете ли Вы изменить свой выбор и вместо шкатулки №1 выбрать шкатулку номер №2. Какова максимальная вероятность выбрать шкатулку с Призом при таких условиях игры? (Ответ представьте в виде несократимой дроби вида p/q, где p и q — натуральные числа.)

Задачу решили: 136
всего попыток: 384
Задача опубликована: 25.05.09 22:46
Прислал: demiurgos img
Источник: Г.Гамов, М.Стерн "Занимательные задачи"
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: NNN

Перед Вами две урны, в которых лежат 20 белых и 20 чёрных шаров, но сколько и каких шаров лежат в каждой урне — неизвестно. Вы наудачу выбираете урну, а затем извлекаете из неё шар. Зависит ли вероятность извлечь белый шар от того, как первоначально разложены шары в урнах? В ответе введите максимальное значение этой вероятности в виде несократимой дроби p/q, где p и q — натуральные числа.

Задачу решили: 209
всего попыток: 540
Задача опубликована: 10.06.09 16:27
Прислал: demiurgos img
Источник: В.В.Ткачук "Математика — абитуриенту"
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: zmerch

Сколько различных решений имеет уравнение log1/16x=(1/16)x?

Задачу решили: 57
всего попыток: 213
Задача опубликована: 12.03.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

При скачивании файла пользователю показывается прогноз оставшегося времени, которое рассчитывается исходя из предположения, что средние скорости скачивания всего файла и его уже скачанной части одинаковы. Через 20 секунд после начала закачки файла размером 100 Мбайт ожидаемое до её окончания время составляло 1 минуту и не изменялось после этого в течение 2 минут. Сколько Кбайт/сек составляла мгновенная скорость скачивания в конце этих 2 минут? Ответ округлите до ближайшего целого числа и помните, что 1 Мбайт = 1024 Кбайт.

Задачу решили: 98
всего попыток: 328
Задача опубликована: 14.04.10 08:00
Прислала: IrineK img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: nellyk

Кот Матроскин и пёс Шарик договорились встретиться возле большого дуба в течение 25 минут, чтобы вместе отправиться за кладом. Было условлено, что каждый будет ждать ровно 10 минут — ведь очень хочется выкопать сокровища поскорее. Сколько процентов составляет вероятность того, что друзья откопают клад вдвоем, при условии, что все моменты появления каждого из них в течение оговоренных 25 минут равновероятны. (Точнее, моменты их появления — независимые равномерно распределённые случайные величины.)

Задачу решили: 80
всего попыток: 325
Задача опубликована: 12.05.10 08:00
Прислала: IrineK img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Три студента живут в одной комнате в общежитии. К концу месяца они испытывают серьезные финансовые затруднения и решают  «сброситься», чтобы на собранную сумму купить необходимые продукты. Нужно собрать 1000 рублей. Каждый заявляет, что уж 500 рублей у него есть. Но, скорее всего, они преувеличивают: реальное количество денег у каждого из них может с равной вероятностью и независимо от других оказаться любой суммой от сушеного комара в кошельке до заявленного максимума в 500 рублей. Сколько процентов составляет вероятность продовольственного кризиса для бедняг-студентов в данных обстоятельствах? (Ответ округлите до ближайшего целого числа.)

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.