img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил решение задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 764
всего попыток: 1940
Задача опубликована: 20.03.09 23:20
Прислал: demiurgos img
Источник: Собеседование в 57-й школег. Москвы
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Lisney_Anton (Антон Лисный)

В ряд стоят 30 стульев. Время от времени подходит человек и садится на один из свободных стульев. При этом один из его соседей (если такие есть) встает и уходит. Какое наибольшее число стульев может оказаться занятым, если сначала все они свободны?

Задачу решили: 655
всего попыток: 2445
Задача опубликована: 26.03.09 17:09
Прислал: demiurgos img
Источник: Собеседование в 57-й школе г. Москвы
Вес: 1
сложность: 2 img
класс: 1-5 img
баллы: 100
Лучшее решение: John (Евгений Ларьков)

В общежитии 30 жилых комнат. Из года в год первого апреля жители этих комнат повторяют один и тот же розыгрыш. Они просыпаются по очереди и, если дверь их собственной комнаты на месте, то они снимают дверь какой-нибудь другой из этих комнат и уносят её в подвал. Если же дверь их комнаты унесена, то они забирают из подвала любую дверь и вешают её на место своей. (Если ни одно из этих действий невозможно, то они не делают ничего). Какое наибольшее количество дверей может оказаться в подвале после того, как все проснутся?

Задачу решили: 171
всего попыток: 639
Задача опубликована: 26.04.09 15:18
Прислал: dasaneleq img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg

Саша выставляет на пустую шахматную доску ладьи: первую — куда захочет, а каждую следующую ставит так, чтобы она побила нечетное число ранее выставленных ладей. Какое наибольшее число ладей он сможет так выставить? (Как обычно, ладьи бьют друг друга и по вертикали, и по горизонтали, но только если между ними нет других ладей.)

Задачу решили: 559
всего попыток: 1600
Задача опубликована: 12.05.09 14:28
Прислал: dasaneleq img
Вес: 1
сложность: 2 img
класс: 1-5 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: NikitaKozlov77... (Никита Козлов)

В спешке не пропустить начало нового сериала, семья ночью подошла к мосту. Папа может перейти его за 1 минуту, мама — за 2, сынишка — за 5, а бабушка — за 10 минут. У них есть один фонарик, а мост выдерживает только двоих. За сколько минут все они смогут его перейти при лучшей организации своего движения?

Условия для особо придирчивых: Если переходят двое, то они идут с меньшей из скоростей. Идти по мосту без фонарика нельзя. Светить издали нельзя. Носить друг друга на руках нельзя. Бросать фонарик нельзя.

Задачу решили: 236
всего попыток: 589
Задача опубликована: 14.05.09 18:10
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада школьнико...
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

Имеется 2009 мешочков с 1, 2, 3,..., 2008 и 2009 монетами. Каждый день разрешается взять из одного или нескольких мешочков по одинаковому числу монет. За какое минимальное число дней можно взять все монеты? 

Задачу решили: 161
всего попыток: 335
Задача опубликована: 30.06.09 18:59
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: fedyakov

Есть 10 упаковок по 100 одинаковых монет в каждой. Есть несколько упаковок с фальшивыми монетами, вес каждой из которых на 0,1 грамма меньше, чем настоящей. Имеются весы, измеряющие вес с точностью до 0,1 грамма. За какое минимальное число взвешиваний можно выявить все упаковки с фальшивыми монетами? (Веса настоящих монеты известны. В каждой упаковке либо все монеты фальшивые, либо все настоящие. Упаковки можно вскрывать.)

Задачу решили: 88
всего попыток: 441
Задача опубликована: 05.10.09 10:27
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: fedyakov

На шахматной доске стоят 64 ладьи (на каждой клетке по ладье). Саша снимает их с доски по очереди, следуя правилу: можно снять любую ладью, которая бьёт нечётное число других оставшихся на доске ладей. Какое максимальное количество ладей удастся снять Саше? (Как обычно, ладьи бьют друг друга и по вертикали, и по горизонтали, но только если между ними нет других ладей.)

Задачу решили: 80
всего попыток: 576
Задача опубликована: 13.02.10 17:39
Прислал: demiurgos img
Источник: Московская олимпиада
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: TALMON (Тальмон Сильвер)

Какое наименьшее число матчей нужно провести, чтобы из 24 теннисистов гарантированно определить двух сильнейших, т.е. честно разыграть между всеми участниками I и II места? (Любые два участника играют в разную силу; в каждом матче побеждает сильнейший; если А сильнее Б, а Б сильнее В, то А сильнее В.)

Задачу решили: 143
всего попыток: 264
Задача опубликована: 22.02.10 08:00
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: nellyk

У Вас есть 8 одинаковых по размеру и внешнему виду шариков, среди которых 4 алюминиевых и 4 дюралевых. Различить их можно только по весу. За какое минимальное число взвешиваний на чашечных весах без гирь Вам удастся найти среди них два шарика, сделанных из разных металлов? (Массы всех шариков из одного и того же металла совпадают.)

Задачу решили: 104
всего попыток: 188
Задача опубликована: 27.08.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: andervish (Андрей Вишневый)

В ряд слева направо были выставлены гирьки массами 1 г, 2 г, …, 13 г. Из них осталось только семь подряд стоящих, а остальные шесть гирек потеряны. За какое наименьшее число взвешиваний на чашечных весах можно определить массы оставшихся гирек?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.