Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
77
всего попыток:
186
В оранжерее на космической станции в виде прямоугольника 12×15 расставлены горшки с цветами. На каждом цветке сидит по одной бабочке. Хлопнула дверь, и каждая из 180-ти бабочек перелетела на соседний по диагонали цветок. После этого на некоторых цветах оказалось по несколько бабочек, а на некоторых — ни одной. Найдите наименьшее возможное число цветов, на которых не сидит ни одной бабочки.
Задачу решили:
96
всего попыток:
150
Одна биссектриса равнобедренного тупоугольного треугольника в два раза длиннее другой. Сколько градусов составляет его тупой угол?
Задачу решили:
56
всего попыток:
183
В настольной игре 20 фишек первоначально расположены в различных вершинах некоторого (необязательно правильного!) выпуклого 24-угольника. За один ход можно передвинуть любое число фишек в одном и том же направлении на одно и то же расстояние. Через какое наименьшее число ходов все фишки могут оказаться на одной прямой?
Задачу решили:
128
всего попыток:
157
В треугольнике медианы и перпендикулярны. Найдите , если и .
Задачу решили:
61
всего попыток:
204
В оранжерее на космической станции в виде прямоугольника 20×30 расставлены горшки с цветами. На каждом цветке сидит по одной бабочке. Хлопнула дверь, и каждая из 600 бабочек перелетела по диагонали через один цветок. После этого на некоторых цветах оказалось по несколько бабочек, а на некоторых — ни одной. Найдите наименьшее возможное число цветов, на которых не сидит ни одной бабочки.
Задачу решили:
44
всего попыток:
249
В оранжерее на космической станции в виде прямоугольника 23×31 расставлены горшки с цветами. На каждом цветке сидит по одной бабочке. Хлопнула дверь, и каждая из 713 бабочек перелетела по диагонали через один цветок. После этого на некоторых цветах оказалось по несколько бабочек, а на некоторых — ни одной. Найдите наименьшее возможное число цветов, на которых не сидит ни одной бабочки.
Задачу решили:
101
всего попыток:
137
Саша бросил монету 21 раз, а Володя — только 20. Найдите вероятность того, что у Саши выпало больше орлов, чем у Володи.
Задачу решили:
37
всего попыток:
310
В шахматной композиции (задачах) есть раздел сказочных шахмат. В этих задачах изменены или дополнены некоторые шахматные правила (фигуры, форма шахматной доски и т.п.). Рассмотрим сказочные шахматы, в которых короли могут находиться под боем (шахом), а значит возможно и взятие королей. Остальные шахматные правила оставляем в силе. Целью такой игры может быть, например, взятие всех неприятельских фигур (как в шашках). Среди всех возможных позиций, полученных из начальной шахматной позиции играя по этим правилам, присутствуют и позиции только с двумя фигурами — белым королём и чёрным слоном, в которых белые начинают и выигрывают в один ход. Вычислите вероятность возникновения такой позиции при случайной расстановке белого короля и чёрного слона на пустую шахматную доску.
Задачу решили:
95
всего попыток:
117
Хорда удалена от центра окружности на расстояние 60. В каждый из двух полученных сегментов вписан квадрат так, что пара его соседних вершин лежит на хорде, а другая пара вершин — на соответствующей дуге окружности. Найдите разность длин сторон квадратов.
Задачу решили:
101
всего попыток:
154
На окружности отмечены четыре точки A, B, C и D так, что хорды AC и BD перпендикулярны друг другу, а AB=4, BC=8 и CD=13. Найдите площадь четырёхугольника ABCD.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|